• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
Articles in Press
Current Issue
Journal Archive
Volume Volume 36 (2017)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 35 (2016)
Volume Volume 34 (2015)
Volume Volume 33 (2014)
Volume Volume 32 (2013)
Volume Volume 31 (2012)
Volume Volume 30 (2011)
Volume Volume 29 (2010)
Volume Volume 28 (2009)
Volume Volume 27 (2008)
Volume Volume 26 (2007)
Volume Volume 25 (2006)
Volume Volume 24 (2005)
Volume Volume 23 (2004)
Volume Volume 22 (2003)
Volume Volume 21 (2002)
Volume Volume 20 (2001)
Volume Volume 19 (2000)
Volume Volume 18 (1999)
Volume Volume 17 (1998)
Volume Volume 16 (1997)
Volume Volume 15 (1996)
Volume Volume 14 (1995)
Volume Volume 13 (1994)
Volume Volume 12 (1993)
Volume Volume 11 (1992)
Volume Volume 10 (1991)
Volume Volume 9 (1990)
Volume Volume 8 (1989)
Volume Volume 7 (1988)
Volume Volume 6 (1987)
Al-Maydama, H., Al Kahali, M., Abduljabbar, A., Aaad, A. (2017). The Photocatalytic, Thermal Degradation Kinetics and Lifetime Prediction of Some Commercial Reactive Dyes. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(4), 45-57.
Hussein M. Al-Maydama; Mohamed S. Al Kahali; Adlia A. Abduljabbar; Abdulbasset M. Aaad. "The Photocatalytic, Thermal Degradation Kinetics and Lifetime Prediction of Some Commercial Reactive Dyes". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36, 4, 2017, 45-57.
Al-Maydama, H., Al Kahali, M., Abduljabbar, A., Aaad, A. (2017). 'The Photocatalytic, Thermal Degradation Kinetics and Lifetime Prediction of Some Commercial Reactive Dyes', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(4), pp. 45-57.
Al-Maydama, H., Al Kahali, M., Abduljabbar, A., Aaad, A. The Photocatalytic, Thermal Degradation Kinetics and Lifetime Prediction of Some Commercial Reactive Dyes. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2017; 36(4): 45-57.

The Photocatalytic, Thermal Degradation Kinetics and Lifetime Prediction of Some Commercial Reactive Dyes

Article 6, Volume 36, Issue 4 - Serial Number 84, July and August 2017, Page 45-57  XML PDF (475 K)
Document Type: Research Article
Authors
Hussein M. Al-Maydama ; Mohamed S. Al Kahali; Adlia A. Abduljabbar; Abdulbasset M. Aaad
Chemistry Department, Faculty of Sciences, Sana'a University, Sana'a, YEMAN
Abstract
The photocatalytic degradation of the commercial reactive Black5 (RB5), Blue19 (RB19), Green19 (RG19), Red120 (RR120), and Yellow81 (RY81) in aqueous solution and sunlight were examined in the presence of Fe2O3 and the mixture Fe2O3/H2O2 as catalysts. The results showed that the photocatalytic degradation followed first-order kinetics with faster degradation in case of the mixture Fe2O3/H2O2 than that in Fe2O3 catalyst. The photocatalytic degradation percentages with the exposure time intervals obtained for each dye were extrapolated to determine the time at the complete degradation (100% degradation). The thermal decomposition behavior of these dyes was investigated by using non-isothermal thermogravimetric analysis (TG, DTG, and DTA), at 10 °C/min heating rate and under nitrogen. The Coats-Redfern integral method was used for the five reactive dyes in order to evaluate the kinetic parameters for each step in the sequential decomposition TGA curves. The initial molecular structure destruction of these five reactive dyes occurred at their second steps. The kinetic parameters of this structural destruction step at multiple heating rates (10, 15, 20 and 30 °C/min) were only worked out for three selected dyes (RB5, RB19, and RR120) using the Flynn-Wall-Ozawa equation and compared with that of Kissinger's equation. Based on the data obtained by the Coats-Redfern method, the thermodynamic parameters (∆G*, ∆H* and ∆S*) for these second steps were determined. Finally, the kinetic data extracted from the TGA curves were also used as appropriate to predicate the lifetime of the five dyes at 25, 50, 100 and 200 °C.
Keywords
Reactive dyes; Photocatalytic; Sunlight; TGA; Single heating rate; Multiple heating rates; Thermal stability; Degradation kinetics; Lifetime prediction
Main Subjects
Catalysts, Kinetics, Reactor; Colour & Textile Chemistry
References
[1] Cisneros R.L., Espinoza A.G., Litter M.I., Photo Degradation of an Azo Dye of the Textile Industry, Chemosphere, 48: 393-399 (2002).

[2] Lee Y.H., Pavlostathis S.G., Decolorization and Toxicity of Reactive Anthraquinone Textile Dyes under Methanogenic Conditions, Water Res., 38 (7): 1838-1852 (2004).

[3] Zollinger H., "Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments", VCH Publishers, Weinheim, German (1991).

[4] Lewis D.M., Coloration for the Next Century, Review of Progress in Coloration and Related Topics, 29: 23-28 (1999).

[5] Muruganadham M., Sobana N., Swaminthan M., Solar Assisted Photocatalytic and Photochemical Degradation of Reactive Black 5, J. Hazardous Materials, B137: 1371-1376 (2006).

[6] Marechal A.M.L., Slokar Y.M., Taufer T., Decoloration of Chlorotriazine Reactive Azo Dyes with H2O2/UV, Dyes Pigments, 33: 281–298 (1997).

[7] Georgiou D., Melidis P., Aivasidis A., Gimouhopoulos K., Degradation of Azo-Reactive Dyes by Ultraviolet Radiation in the Presence of Hydrogen Peroxide, Dyes Pigments, 52:69–78 (2002).

[8] Neamtu M., Siminiceanu I., Yediler A, Kettrup A., Kinetics of Decolorization and Mineralization of Reactive Azo Dyes in Aqueous Solution by the UV/H2O2 Oxidation, Dyes Pigments, 53: 93–99 (2002).

[9] Cho II-H, Kim L-H, Zoh K-D, Park J-H, Kim H-Y., Solar Photocatalytic Degradation of Groundwater Contaminated with Petroleum Hydrocarbons, Environmental Progress, 25 (2): 99-109 (2006).

[10] Jahagirdar A.A., Zulfiqar Ahmed M.N., Donappa N., Nagabhushana H., Nagabhushana B.M., Photocatalytic Degradation of Rhodamine B Using Nanocrystalline α-Fe2O3, J. Mater. Environ. Sci. 5 (5): 1426-1433 (2014).

[11] Cano-Guzmán C.F.,. Pérez-Orozco J.P, Hernández-Pérez I., L. González-Reyes I., Garibay-Febles V.,  Suárez-Parra R., Kinetic Study for Reactive Red 84 Photo Degradation Using Iron (III) Oxide Nanoparticles in Annular Reactor, Textile Sci Eng,4 (2): 155 (2014).

[12 Neamtu M., Yediler A., Siminiceanu I., Kettrup A., Oxidation of Commercial Reactive Azo Dye Aqueous Solutions by the Photo-Fenton and Fenton-Like Processes, J. Photochem. Photobiol. A: Chemistry, 161: 87-93 (2003).

[13] Masaund, M., Khalil, E., El-Sayed El-Shereafy, E., El-Enein S., Thermal and Electrical Behaviour of Nickel(II) and Copper(II) Complexes of 4-Acetylamino-2-Hydroxy-5-Methylazobenzene, J. Thermal Anal., 36: 1033-1038 (1990).

[14] Egli R., Color Chemistry: The Design and Synthesis of Organic Dyes and Pigments, Edited by. A. Peters, H. Freeman, Elsevier Applied science, London (1991).

[15] Emam M., Kenawy I., Hafez M., Study of the Thermal Decomposition of Some New Cyanine Dispersed Dyes, J. Therm. Anal. Cal., 63: 75-83 (2001).

[16] Emam M., Thermal Stability of Some Textile Dyes, J. Therm. Anal. Cal., 66: 583-591 (2001).

[17] Kocaokutgen H.H., Heren Z., Thermal Behaviour of Some Azo Dyes Containing Sterically Hindered and Water-Soluble Groups, Turk J. Chem., 22: 403 (1998).

[18] Kocaokutgen H., Gümrükçüoğlu I.E., Thermal Characterization of Some Azo Dyes Containing Intramolecular Hydrogen Bonds and Non-Bonds, J. Therm. Anal. Cal., 71:675-679 (2003).

[19] Rotaru A., Moanţ¸ă A., Popa G., Rotaru P., Segal E., Thermal Decomposition Kinetics of Some Aromatic Aomonoethers: Part IV. Non-Isothermal Kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl) diazenyl) Phenol in Air Flow, J. Therm. Anal. Calorim., 97: 485–491 (2009).

[20] Mocanu A., Odochian L., Apostolescu N., Moldoveanu C., TG-FTIR Study on Thermal Degradation in Air of Some New Diazoaminoderivatives, J. Therm. Anal. Calorim., 100: 615-622 (2010).

[21] Mocanu A., Odochian L., Moldoveanu C., Carja G., TG-FTIR Study on Thermal Degradation in Air of Some New Diazoaminoderivatives (II), Thermochimica Acta, 509: 33-39 (2010).

[22] Mocanu A., Odochian L., Apostolescu N., Moldoveanu C., Comparative Study on Thermal Degradation of Some New Diazoaminoderivatives Under Air and Nitrogen Atmospheres, J. Therm. Anal. Calorim., 103: 283-291 (2011).

[23] Coats A.W., Redfern J.P., Kinetic Parameters from Thermogravimetric Data, Nature, 201: 68 (1964).

[24] Ozawa T., A New Method of Analysing Thermogravimetric Data”, Bull. Chem. Soc. Jpn., 38: 1881 (1965).

[25] Flynn J.H., Wall L.A., A Quick Direct Method for Determination of Activation Energy from Thermogravimetric Data, J Polym Sci, B4: 323–8 (1966).

[26] Kissinger H.E., Reaction Kinetics in Deferential Thermal Analysis, Anal Chem., 29: 1702-6 (1957).

[27] Enes S., Optimization and Modeling of Decolorization and COD Reduction of Reactive Dye Solutions by Ultrasound-Assisted Adsorption, Chem. Eng. J., 119: 175–181 (2006).

[28] Houas A.H., Lachhab M., Ksibi E., Elaloui C., Guillard C., Herrmann J.M., Photocatalytic Degradation Pathway of Methylene Blue in Water, Appl. Catal. B: Environ., 31, 145-157 (2001).      

[29] Al-Maydama H.M., El-Shekeil A.G., Al-Karbouly A., Al-Ikrimawy W., Thermal Degradation Behavior of Some Poly [4-amino-2,6-pyrimidinothiocarbamate] Metal Complexes, the Arabian journal for science and engineering, 34(1):67-75 (2009).

[30] Odochian L., Moldoveanu C., Carja G., Contributions to the Thermal Degradation Mechanism Under Air Atmosphere of PTFE by TG–FTIR Analysis: Influence of the Additive Nature, Thermochimica Acta, 558: 22– 28 (2013).

[31] Vyazovkin, S., Lesnikovich, A. I., An Approach to the Solution of the Inverse Kinetic Problem in the Case of Complex Processes. Part 1: Methods Employing a Series of Thermoanalytical Curves, Thermochim Acta, 165: 273–80 (1990).

[32] Vyazovkin S., Sbirrazzuoli N., Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers, Macromol Rapid Commun., 27: 1515–32 (2006).

[33] Wang H., Tao X., Newton E., Thermal Degradation Kinetics and Lifetime Prediction of a Luminescent Conducting Polymer, Polym. Int., 53: 20–26 (2004).

[34] Liu C., Yu J., Sun X., Zhang J., He J., Thermal Degradation Studies of Cyclic Olefin Copolymers, Polym Degrad Stab., 81: 197-205 (2003).

[35] Al-Maydama H.M., Comments on the Effect of UV Radiation on the Thermal Parameters of Collagen Degradation, Polym Degrad Stab., 84: 363-365 (2004).

[36] Xin-Gui Li, Huang M-R., Thermal Decomposition Kinetics of Thermotropic Poly(oxybenzoate-co-oxynaphthoate), Polymer Degradation Stability, 64: 81-90 (1999).

[37] Prime R.B., Bair H. E., Vyazovkin S., Gallagher P.K., Riga A., Thermogravimetric Analysis (TGA). In Thermal Analysis of Polymers: Fundamentals and Applications, eds. J. D. Menczel and R. B. Prime. Hoboken, NY: Willey, 241–317 (2009).

Statistics
Article View: 107
PDF Download: 212
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web page hit counter

Journal Management System. Designed by sinaweb.