Ni@Zeolite-Y Nano-Porous: Preparation and Application as a High Efficient Catalyst for Facile Synthesis of Quinoxaline, Pyridopyrazine, and Indoloquinoxaline Derivatives

Document Type : Research Article

Authors

Department of Chemistry, Payame Noor University (PNU), P.O. BOX 19395-4697 Tehran, I.R. IRAN

Abstract

In this research, by a simple and modified method, nanoporous of Ni(II) ion loaded Y-type zeolite (NNZ) was designed and applied as a novel highly efficient catalyst for the synthesis of quinoxalines, pyrido[2,3-b]pyrazines, and indolo[2,3-b]quinoxalines 3a-sThese heterocycles were obtained through a one-pot condensation reaction of aryl-1,2-diamines with 1,2-diketones or the isatin in the presence of catalytic amount of Ni@zeolite-Y in ethanol or acetic acid at room temperature giving good to excellent yield. The structure of entitled catalyst was identified with FT-IR spectroscopy, Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. This method has some advantages such as the use of inexpensive, safety, stable and recyclable catalyst, high yields, short reaction times, and easy isolation of the product. It can be claimed that this approach in simplicity covers the goals of green chemistry.

Keywords

Main Subjects


[1] Mamedov V.A., “Quinoxalines”,1st ed. Springer, AG Switzerland (2016).
[3] Hui X., Desrivot J., Bories C., Loiseau P.M., Frank X., Hocquimiller R., Figade`re B., Synthesis and Antiprotozoal Activity of Some New Synthetic Substituted Quinoxalines, Med. Chem. Lett., 16: 815-820 (2006).
[4] Sakata G., Makino K., Karasawa Y., Recent Progress in the Quinoxaline Chemistry: Synthesis and Biological and References Cited Therein Activity, Heterocycles, 27: 2481-2515 (1988). 
[5] Lindsley C.W., Zhao Z., Leister W.H., Robinson R.G., Barnell S.F., Defeozones D., Jones R.E., Hartman G.D., Huff J.R., Huber H.E., Duggan M.E., Allosteric Akt (PKB) inhibitors: Discovery and SAR of Isozyme Selective Inhibitors, Bioorg. Med. Chem. Lett., 15: 761-764 (2005).
[6] Sarges R., Howerd H.R., Browne R.C., Label L.A., Seymour P.A., 4-Amino[1,2,4] Triazolo[4,3-a]quinoxalines: A Novel Class of Potent Adenosine Receptor Antagonists and Potential Rapid-Onset Antidepressants, J. Med. Chem., 33: 2240-2254 (1990).
[7] Dailey S., Feast J.W., Peace R.J., Sage I.C., Till S., Wood E.L., Synthesis and Device Characterization of Side-Chain Polymer Electron Transport Materials for Organic Semiconductor Applications. J. Mater. Chem., 11: 2238-2243 (2001).
[8] O’Brien D., Weaver M.S., Lidzey D.G., Bradley D.D.C., Use of Poly(phenyl quinoxaline) as an Electron Transport Material in Polymer Light-Emitting Diodes, Appl. Phys. Lett., 69: 881-883 (1996).
[9] Thomas K.R.J., Velusamy M., Lin J.T., Tao Y.-T., Chuen C.-H., Chromophore-Labeled Quinoxaline Derivatives as Efficient Electroluminescent Materials, Chem. Mater., 17: 1860-1866 (2005).
[10] Dell A., William D.H., Morris H.R., Smith G.A., Feeney J., Roberts G.C.K., Structure Revision
of the Antibiotic Echinomycin,
J. Am. Chem. Soc., 97: 2497-2502 (1975).
[12] Guillon J., Philippe G., Labaied M., Sonnet P., Le`ger J.M., Poulain P.D., Bares I.F., Dallemagne P., Lemaitre N., Pehourcq F., Rochette J., Sergheraert C., Christian J., Synthesis, Antimalarial Activity, and Molecular Modeling of New pyrrolo[1,2-a]quinoxa lines, bispyrrolo[1,2-a]quinoxalines, Bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and Bispyrrolo[1,2-a]thieno[3,2-e] pyrazines, J. Med. Chem., 47: 1997-2009 (2004).
[13] Leslie W.D., Antony J.K., Graeme J.F., Bruce C.B., William A.D., Positioning of the Carboxamide Side Chain in 11-oxo-11H-indeno[1,2-b] Quinolinecarboxamide Anticancer Agents: Effects on Cytotoxicity, Bioorg. Med. Chem., 9: 445–452 (2004).
[14] DrillerK.M., LibnowS., HeinM., HarmsM., WendeK.,Lalk M., Michalik D., ReinkeH., Langer P.,Synthesis of 6H-indolo[2,3-b]quinoxaline-N-Glycosides and Their Cytotoxic Activity Against Human Ceratinocytes (HaCaT), Org. Biomol. Chem. 6: 4218-4223 (2008).
[15] Harmenberg J., Akesson J.A., Graslund A., Malmfors T., Bergman J., Wahren B., The Mechanism of Action of the Anti-Herpes Virus Compound 2,3-dimethyl-6(2 dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline, Antiviral Res., 15: 193–204 (1991).
[16] HarmenbergJ.,Wahren B., BergmanJ., ÅkerfeldtS.,Lundblad L.,Antiherpesvirus Activity and Mechanism of Action of Indolo-(2,3-b)quinoxaline and AnalogsAntimicrob. Agents Chemother,32: 1720-1724 (1988).
[17] MoorthyN.S.H.N., Karthikeyan C., Trivedi P., Design, Synthesis, Cytotoxic Evaluation, and QSAR Study of Some 6H-indolo[2,3-b]quinoxaline Derivatives, J. Enzyme Inhib. Med. Chem., 25: 394-405 (2010).
[18] Moorthy N.S., Manivannan E., Karthikeyan C., Trivedi P., 6H-Indolo[2,3-b]quinoxalines: DNA and Protein Interacting Scaffold for Pharmacological ActivitiesMini. Rev. Med. Chem., 13: 1415-1420 (2013).
[19] WilhelmssonL.M.,Kingi N.,Bergman J., Interactions of Antiviral Indolo[2,3-b]quinoxaline Derivatives with DNA, J. Med. Chem., 51: 7744-7750 (2008).
[20] Bhosale R.S., Sarda S.R., Ardhapure S.S., Jadhav W.N., Bhusare S.R., Pawar R.P., An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature Using Molecular Iodine as the Catalyst, Tetrahedron Lett., 46: 7183-7189 (2005).
[22] Srinivas C., Kumar C.N.S.S.P., Jayathirtha Rao V., Palaniappan S., Efficient, Convenient, and Reusable Polyaniline–Sulfate Salt Catalyst for the Synthesis of Quinoxaline Derivatives, J. Mol. Catal. A. Chem., 265: 227-230 (2007).
[23] Huang T.K., Wang R., Shi L., Lu X.X., Montmorillonite K-10: An Efficient and Reusable Catalyst for the Synthesis of Quinoxaline Derivatives in Water, Catal. Commun, 9: 1143-1147 (2008). 
[24] Cai J.J., Zou J.P., Pan X.Q., Zhang W., Gallium (III) Triflate-Catalyzed Synthesis of Quinoxaline Derivatives, Tetrahedron Lett.,49: 7386-7390 (2008).
[25] Heravi M.M., Bakhtiari K., Oskooie H.A., Taheri S., MnCl2-Promoted Synthesis of Quinoxaline Derivatives at Room Temperature, Heteroatom Chem., 19: 218-220 (2008).
[26] Heravi M.M., Taheri S., Bakhtiari K., Oskooie H.A., On Water: A Practical and Efficient Synthesis of Quinoxaline Derivatives Catalyzed by CuSO4. 5H2O. Catal. Commun., 8: 211-214 (2007).
[27] Heravi M.M., Tehrani M.H., Bakhtiari K., Oskooie H.A., Zn/L-Proline: A Powerful Catalyst for the Very Fast Synthesis of Quinoxaline Derivatives at Room Temperature, Catal. Commun., 8: 1341-1344 (2007).
[28] Aghapoor K., Darabi H.R., Mohsenzadeh F., Balavar Y., Daneshyar H., Zirconium(IV Chloride as Versatile Catalyst for the Expeditious Synthesis of Quinoxalines and Pyrido[2,3-b]pyrazines under Ambient Conditions. Transit. Metal Chem., 35: 49-53 (2010).
[30] Bodaghifard M.A., Mobinikhaledi A., Zendehdel M., Ayalvar Z., An Efficient Synthesis of Quinoxaline Derivatives Using Zeolite Y as a Catalyst, Rev. Roum. Chim., 60: 345-348 (2015).
[32] Kunkuma V., Prabhavathi Devi B.L.A., Bhongiri Y., Prasad Rachapudi B.N., Prasad Potharaju S.S.,
An Efficient Synthesis of Quinoxalines Catalyzed by Monoammonium Salt of 12-tungstophosphoric Acid, Eur. J. Chem., 2: 495-498 (2011).
[35] Hou J-T., Liu Y.-H., Zhang, Z.-H.NbCl5 as an Efficient Catalyst for Rapid Synthesis of Quinoxaline Derivatives, J. Heterocyclic Chem., 47: 703-706 (2010).
[37] Soleymani R., Nikan N., Tayeb S., Hakimi S., Synthesis of Novel Aryl Quinoxaline Derivatives by New Catalytic Methods, Orient. J. Chem., 28: 687-701 (2012).
[38] Rezanejade G., Malakooti R., Jami F., Parsaei Z., Atashin H., Covalent Anchoring of Copper-Schiff Base Complex Into SBA-15 as a Heterogeneous Catalyst for the Synthesis of Pyridopyrazine and Quinoxaline Derivatives, Catal. Commun., 27: 49-53 (2012).
[39] Rezanejade G., Mohamadi A., Efficient and Practical Protocol for the Synthesis of Pyridopyrazines, Pyrazines and Quinoxalines Catalyzed by La(OAc)3 in Water. Iran. J. Chem. Chem. Eng. (IJCCE), 32: 61-67 (2013).
[41] Vadivel P., Lalitha A., Modified MCM-41 Materials as Efficient and Reusable Catalysts for the Synthesis of Quinoxaline Derivatives, Elixir. Org. Chem., 55: 13013-13016 (2013).
[42] DowlatabadiR., KhalajA.,Rahimian S., Montazeri M., AminiM., Shahverdi A., Mahjub E., Impact of Substituents on the Isatin Ring on the Reaction between Isatins with Ortho-Phenylenediamine,
Syn. Commun., 41: 1650-1658 (2011).
[43] Hegade P.G., Mane M.M., Patil J.D., Pore D.M., Sulfamic Acid: a Mild, Efficient, and Cost-Effective Catalyst for Synthesis of Indoloquinoxalines at Ambient Temperature, Synth. Commun., 44:3384-3391 (2014). 
[44] Zhang H., A Green Synthesis of Indolo[2,3-b]quinoxaline Derivatives, J. Chem. Res., 38: 705–709 (2014).
[45] Thomas J.M., Catlow C.R.A., New Light on the Structure of Aluminosilicate Catalysts, Prog. Inorg. Chem., 35: 1-49 (1987).
[48] Kooti M., Zendehdel M., Mohammadpour-Amini A., Esterification and Intramolecular Acylation Reactions with Transition Metal/Zeolites, J. Incl. Phen. Macrocycl. Chem., 42: 265-268 (2002).
[49] Gauthier C., Chiche B., Finiels A., Genste P., Influence of Acidity in Friedel-Crafts Acylation Catalyzed by Zeolites, J. Mol. Catal, 50: 219-229 (1989).
[51] Dastanian M., Seyedeyn-Azad F., Desulfurization of Gasoline over Nanoporous Nickel Loaded Y-Type Zeolite at Ambient Conditions, Ind. Eng. Chem. Res., 49: 11254–11259 (2010).
[53] Xiaoxiao W., Wei Z., Liangfu Z., Methylation of Naphthalene with Methanol over SAPO-11 Zeolite, Iran. J. Chem. Chem. Eng. (IJCCE), 34 (3): 19-24 (2015).
[54] Chen C., Ting C., Yisu S., Yuan T., Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F (K) Zeolite. Iran. J. Chem. Chem. Eng. (IJCCE), 33(3): 29-35 (2014).
[55] Kalhor M., Khodaparast N., Use of Nano-CuY Zeolite as an Efficient and Eco-Friendly Nanocatalyst for Facile Synthesis of perimidine Derivatives, Res. Chem. Intermed., 41: 3235–3242 (2015).
[57] Kalhor M.; Khodaparast N., Zendehdel M., Facile Synthesis of 2-arylbenzimidazoles by Nano-CuY Zeolite as an Efficient and Eco-Friendly Nanocatalyst, Lett. Org. Chem., 10: 573-577 (2013).
[58] Zendehdel M., Mobinikhaledi A., Hasanvand J.F., Conversion of Acids to Benzimidazoles with Transition Metal/Zeolites, J. Incl. Phenom. Macrocycl. Chem., 59: 41-44 (2007).
[59] Yang C., Xu Q., Aluminated Zeolites β and Their Properties Part 1. Alumination of Zeolites β,
J. Chem. Soc. Faraday Trans., 93: 1675–1680 (1997).
[60] Perez-Pariente J., Martens J.A., Jacobs P.A., Crystallization Mechanism of Zeolite Beta from (TEA)2O, Na2O and K2O Containing Aluminosilicate Gels, Appl. Catal., 31: 35-64 (1987).
[61] Sajjadifar S., Zolfigol M.A., Mirshokraie A., Miri S., Louie O., Rezaee Nezhad E., Karimian S., Darvishi G., Donyadari E., Farahmand S., Facile Method of Quinoxaline Synthesis Using Phenol as a New, Efficient and Cheap Catalyst at Room Temperature, Am. J. Org. Chem., 2: 97-104 (2012).
[62] Niknam K., Zolfigol M.A., Tavakolic Z., Heydaric Z., Metal Hydrogen Sulfates M(HSO4)n: As Efficient Catalysts for the Synthesis of Quinoxalines in EtOH at Room Temperature, J. Chin. Chem. Soc., 55: 1373-1378 (2008).
[64] Drushlyak A.G., Ivashchenko A.V., Titov V.V., Reaction of o-phenylenediamine with Isatins. Chem. Heterocycl. Compd., 20: 537-542 (1984).
[65] Shulga S.I., Simurova N.V., Shulga О.S., Misa N.I., Synthesis and Study of 3-methyl-6Н-indolo[2,3-b]quinoxalines, Russ. J. Org. Chem., 50: 1175-1179 (2014).
[66] Aghapoor K., Mohsenzadeh F., Shakeri A., Darabi H.R., Ghassemzadeh M., Neumueller B., Catalytic Application of Recyclable Silica-Supported Bismuth(III) Chloride in the Benzo[N,N]-Heterocyclic Condensation, J. Organomet. Chem., 743: 170-178 (2013).