
Iran. J. Chem. Chem. Eng.  Vol. 27, No.3, 2008 

 

25 

 

 

Adaptive Input-Output Linearization Control of pH Processes 
 

 

Nejati, Ali 

Department of Chemical Engineering, Isfahan University of Technology, Isfahan, I.R. IRAN 

 

Shahrokhi, Mohammad*
+
 

Department of Chemical and Petroleum Engineering, Sharif University of Technology,  

P.O. Box 11365-9465 Tehran, I.R. IRAN 

 

Mehrabani, Arjomand 

Department of Chemical Engineering, Isfahan University of Technology, Isfahan, I.R. IRAN 

 

 

ABSTRACT: pH control is a challenging problem due to its highly nonlinear nature. In this paper 

the performances of two different adaptive global linearizing controllers (GLC) are compared. 

Least squares technique has been used for identifying the titration curve. The first controller is a 

standard GLC based on material balances of each species. For implementation of this controller a 

nonlinear state estimator is used. Some modifications are proposed to avoid the singularity of the 

observer gain. The second controller is designed based on the reduced state equation. Through 

computer simulations, it has been shown that the performances of the second GLC is superior and it 

is more robust to process model mismatch. It should be also noted that the design of reduced state-

based GLC is much easier and dose not need observer for implementation. 

 

 

KEY WORDS: pH control, Exact linearization, Nonlinear state estimator, Least-squares 
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INTRODUCTION 

The main objective of pH processes is to control the 

effluent pH by manipulating the flow rate of titrating 

stream. The pH processes are difficult to control due to 

their nonlinear dynamics. So far, many authors have 

proposed nonlinear control strategies to overcome the 

difficulties involved in pH control.  It must be noted that 

pH neutralization process is widely studied for two 

different reasons. First, because of its environmental 

effects  and  second,  pH  neutralization  process is highly  

 

 

 

nonlinear and is known as a challenging problem. Many 

papers on modeling and control of pH have been 

appeared in the literature. The first effort in this regard 

returns to McAvoy et al. [1]. Gustafsson and Waller [2] 

extended this method by introducing the concept of 

reaction invariant (RI) to general multi component pH 

processes. Strategies for controlling pH are usually based 

on some algorithms that are designed to account for the 

time   varying   characteristics   and   severe   nonlinearity  
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inherent in pH processes. One way to view this 

nonlinearity is to consider a linear model with time-

varying gain and use adaptive techniques for control 

purposes. The works of Mellichamp et al. [3], Gupta and 

Coughanowr [4], Buchholt and Kummel [5], Hurowitz 

and Bobkov [6] are some examples of this type of 

controller. In case of nonlinear control, Zhou et al. [7] 

used H�-controller with a linear function between pH 

and states which is obtained by linearization pH vs. states 

at each point. Yoon et al. [8] have proposed a nonlinear 

controller with an estimator for estimating the 

concentration of feed stream. Lee et al. [9] proposed an 

adaptive back stepping controller with state estimator for 

pH neutralization process. Wright and Kravaris [10], 

Wright et al. [11] reduced the pH process model to a first-

order state equation and introduced the concept of strong 

acid equivalent (SAE). Their control strategy has a good 

performance and is robust to modeling error. If the 

nonlinear part of model (titration curve) is identified on-

line, the controller performance will be improved (Wright 

and Kravaris [12], Wright et al. [13], Lee and Choi [14]). 

A different way to overcome the nonlinear characteristics 

of the pH is to consider multiple models for titration 

curve in which, the best model is selected based on an 

objective function and measured value of pH (Pishvaie 

and Shahrokhi [15], Sun and Hoo [16]). Intelligent 

approaches like artificial neural network and fuzzy set are 

also used for modeling and control of pH processes. 

Some examples of intelligent strategies are works of 

Behera and Anand [17], Palancar et al. [18], Wang and 

Yoon [19], Akesson et al. [20]. 

Among different nonlinear control techniques, 

feedback linearization attracts researchers’ attention more 

than the others. Feedback linearization is used for 

canceling the nonlinearities of the system and applying 

the linear control strategies to the linearized system 

(Slotine and Li [21]). For implementation of GLC, the 

system states must be available. Since in most of practical 

application a few state are measured, a state estimator 

should be used for estimating the unmeasured states. 

Baumann and Rugh [22] developed a state estimator 

based on extended linearization. Biagiola and Figueroa 

[23] used the nonlinear state estimator proposed by 

Ciccarella et al. [24] for pH control. But it can be shown 

that the estimator can not be used for systems consisting 

of strong acid and base together. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: pH neutralization process. 

 

In this work the performances of two linearizing 

controllers have been compared. The first controller is 

designed based on reaction invariants. Since for 

implementation of this controller the system states should 

be available, a Luenberger-like nonlinear state estimator 

has been used to estimate the reaction invariants. For 

systems containing strong acid and base the observer gain 

becomes singular. To avoid this problem, it is proposed 

to use reduced order observer. By updating the titration 

curve, the adaptive version of this controller has been 

designed. The second controller is a GLC designed based 

on reduced state model proposed by Wright and Kravaris 

[10].  For implementation of this controller no observer is 

needed and design of controller is much simpler than the 

first one. Through the same procedure its adaptive 

version can be developed. 

The paper is organized as follows. First, modeling of 

pH is presented. Second, feedback linearization is 

discussed followed by observer design. Next, the 

feedback recursive least-squares method has been used 

for developing the adaptive version of the controllers. 

Finally, the performances of two designed controllers 

have been compared through computer simulations. 

 

pH  PROCESS  MODEL 

Consider a pH neutralization process as shown in  

Fig. 1. V and F denote the volume of the reactor and 

process stream flow rate and are assumed to be constant. 

The output of the process is the pH value of the effluent 

stream, and the flow rate of titrating stream, u, is the 

control input. A dynamic model is derived using the 

conservation law. Assuming constant tank volume and 

perfect   mixing,   the  standard ion  balances  and  electro 

Effluent Stream 

(F + u), xi 

Process Stream 

F , ci 

Titrant Stream 

u , αi 



Iran. J. Chem. Chem. Eng. Adaptive Input-Output Linearization… Vol. 27, No.3, 2008 

 

27 

neutrality condition along with chemical equilibrium 

relations yield the detailed nonlinear state space model of 

the process as given below: 
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where A(pH) = 10-pH - 10pH-14 and xi is the total 

concentration of the ith species in the effluent stream.  

αi and ci are the total ion concentrations of the ith species 

in the titrating and process streams, respectively and 

ai(pH)’s are functions of pH and dissociation constants  

as shown by Wright et al. [13]. 

In this study we have used the reduced model 

developed by Wright and Kravaris [10] which is 

discussed very briefly as follows. Under the assumption 

that αi and ci are not changing with time, from (1) we 

have: 

ii

ii

ii

ii

c

xc
)uF(u

c

xc

dt

d
V

α−

−
+−=��

�

�
��
�

�

α−

−
                            (3) 

This implies that if the system is initially at steady 
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Furthermore, defining: 

ii

ii

c

xc
X

α−

−
=                                                                    (5) 

(3) can be written as: 
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The pH equation (2) becomes: 
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Equations (6) and (7) form a first-order model for the 

process. In what follows we will use (1) for designing the 

first GLC and (6) for the second one. 

 

INPUT-OUTPUT  LINEARIZATION 

Consider  the  nonlinear  affine  system  described by: 

u)x(g)x(fx +=�                                                             (8) 

)x(hy =  

where f and g are vector fields and h is a scalar field.  

In input-output linearization the objective is generating a 

linear differential relation between the output y and a new 

input v. The system has a relative degree r if: 
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where the Lf is the Lie derivative in direction of f. 

Assume that the system (8) is linearizable and has the 

relative degree of r. The input transformation: 
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results in a linear relation between y and v given by: 
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where βi’s are arbitrary design parameters. 

For pH processes, equation (8) becomes: 

u)x(g)x(fx +=�                                                           (12) 

pHy,0)y,x(h ==  

Depending on equations describing the system 

dynamics, two global linearizing controllers can be design. 

If (1) and (2) are considered as system model, we have: 
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The controller obtained based on the above f(x) and 

g(x) is called GLC1. 

If (6) and (7) are used as system model, we have: 

V

X1
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Controller designed based on (14) is called GLC2.  

For both controllers Lgy can be written as given below: 
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It can be shown that: 
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where, α is the titrating agent concentration. 

It’s clear that Lgy ≠ 0 if 0 ≤ y ≤ 14, therefore  

relative order is one and the linearization relation is as 

follows: 

yL

yyLv
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g
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Remark 1: For implementation of GLC1, according 

to equation (10) the system states are required while in 

case of GLC2, for calculating u (equation (17))  only 

reduced order state, X, is needed which can be obtained 

by solving equation (6).   

Remark 2: In the linearization procedure, saturation 

of the actuator is not considered. Therefore, whenever the 

actuator is saturated, we don’t expect fully linearized 

dynamic behavior. 

 
NONLINEAR  STATE  ESTIMATOR 

For implementation of many model based control 

algorithms the system states are required (like GLC1). 

For this reason, many researchers have focused their 

attention on the development of suitable algorithms for 

state estimation. In this regard, several techniques have 

been introduced to estimate state variables from the 

available measurements. For linear system the standard 

solution is the Luenberger observer for deterministic 

systems and the linear Kalman filter for stochastic 

systems. For nonlinear systems several algorithms have 

been proposed (Ciccarella et al. [24], Valluri and 

Soroush [25], Kazantzis and Kravaris [26], Lopez and 

Maya [27]).  

One of the most common nonlinear state observers  

is the one proposed by Ciccarella et al. [24] and  

evaluated by Valluri and Soroush [25]. The basic 

structure of this estimator for the system described by (8) 

is as follow: 
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where K is a constant vector and Φ defined as follows: 
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In fact the matrix Φ performs a nonlinear change of 

coordinates, and is used to design the vector K such that 

the dynamics of (18) remains stable. Biagiola and 

Figueroa [23] used this estimator for a pH process for 

which the output can be written as an explicit function of 

states. Generally, when more than three components are 

present in the system, the output can not be expressed as 

an explicit function of states (12). In such this case Φ is 

defined by: 
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Therefore, (18) is revised into the following form: 

]ŷy[Ku)x̂(g)x̂(fx̂ 1 −Φ∇++= −�                                 (21) 

Remark 3: For the pH system consisting strong acid 

and base, it can be shown that all Lie derivatives 

appeared in the ∇Φ matrix related to strong base ions are 

multiples of the term related to strong acid ions. In fact 

the two columns of matrix ∇Φ (gradient of Φ) relating to 

strong acid and base are dependent, therefore ∇Φ will be 

singular and uninvertible. In such cases we propose using 

reduced order observer or defining virtual state that will 

be discussed in what follows. 

Case I: consider the neutralization of a feed stream 

containing a strong acid by a strong base as the titrating 

agent. In this case, to avoid the singularity of the matrix 

∇Φ, we can use a reduced order observer to estimate the 

concentrations of all species in feed stream and calculate 

the concentration of the titrating base by solving its mass 

balance equation. Details of the reduced order observer 

design for a case containing four species (x1= strong acid 

concentration and x2= strong base concentration) are 

given in appendix A. 

Case II: consider the neutralization of a feed stream 

containing a strong acid and strong base by a titrating 

stream which is also a strong base different from the one 

existing  in  the  feed  stream.  Let  x1  and x2  denote   the  
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Fig. 2: Closed- loop block diagram of GLC1. 

 

concentrations of strong acid and base in the feed stream 

respectively.  We define a virtual state as x'=-x1+x2  and 

use a reduced order observer to estimate x' and 

concentrations of the other species present in the feed 

stream. Using x' in calculating the ∇Φ matrix results in a 

nonsingular matrix. The concentration of the titrating 

strong base is obtained as before i.e. by solving its mass 

balance equation. 

Remark 4: The best performance is obtained when  

y = 10-pH in the design of state estimator and y = pH in 

the design of controller (GLC). 

 

ON-LINE IDENTIFICATION OF TITRATION 

CURVE 

As can be seen from the design equations of both 

controllers, the feed composition is needed for control 

implementation. If the feed composition changes, it can 

deteriorate the performances of controllers. To overcome 

this problem the adaptive version can be used. To update 

the titration curve, an on-line estimator can be designed. 

It’s reasonable to assume that the titrant stream 

concentration is known and is fixed. By rearranging (7) 

we have: 
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All terms appearing on the right-hand side of (22) are 

known because pH is measured, αi are known and X can 

be readily calculated from (6). This leaves only ci 

parameters to be estimated which appeared linearly. In a 

more compact notation, (22) becomes: 
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Fig. 3: Closed- loop block diagram of GLC2. 

 

wher φe φ is a vector of functions of ai(pH) defined by 

Wright et al. (1998) and θ is a vector of ci parameters. 

The vector of parameters can then be estimated on-line 

using a standard recursive least-squares algorithm: 

ePφ=θ�                                                                         (24) 

PPPP Tφφ−λ=�  

where e is the identification error and P is the 

covariance matrix. Combination of covariance resetting 

and forgetting factor has been used to avoid matrix P 

approaching zero. 

 

SIMULATION  RESULTS 

The closed-loop block diagrams of adaptive GLC1 

and GLC2 are shown in Figs. 2 and 3 respectively. In both 

structures a PI controller is used for the linearized system. 

The IMC technique is used for tuning the PI controller. 

The integral time is set to 1/β and the controller gain is 

selected to be one for all simulations run. The observer 

gain is to KT=[10,9,8] ×10-7 and all initial states were set 

to zero. To evaluate the performances of the designed 

controllers the following system has been considered.  

The simulated chemical system consists of HCl as a 

strong acid, HAc as a weak acid and NH3/NH4
+ as a weak 

base titrated with NaOH. The system parameters, initial 

steady-state values, nominal feed concentration (C0) and 

two extremes of feed compositions (C1, C2) are given in 

Table 1. Fig. 4-a demonstrates the nonlinear nature of this 

process by applying ± 21.4 % step changes to the titrating 

flow rate. Fig. 4-b shows the behavior of the linearized 

system for the same changes in the virtual input (v) for 

β=0.1. 

Load Rejection: To evaluate the performances of the 

closed-loop   responses   of   the   designed  controllers,  at  
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Table 1: Parameter values used in the simulation. 

 

F =200 ml/sec V =5000 ml uss,C1 =19.94 ml/sec 

umin =0 ml/sec α=0.04 N uss,C0 =39.87 ml/sec 

umax =80 ml/sec  uss,C2 =74.77 ml/sec 

 Concentration ×103   M 

 C0 C1 C2 

HCl 4 2 8 

HAc (pKa = 4.8) 6 2 8 

NH3 (pKb = 4.75) 2 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Open-loop response for: (a) ±±±± 21.4 % change in u and 

(b) ±±±± 21.4 % change in v. 

time 5 min. the process stream concentration is switched 

from C0 to C1 and next time from C0 to C2. The results are 

shown in Figs. 5 and 6. As can be seen the GLC2 has a 

slightly better performance. In Fig. 7 the actual states and 

their estimates for GLC1 are illustrated.  As can be seen 

all state estimates have converged to their actual values 

before the disturbance occurs. After disturbance is 

introduced the state estimates have converged to wrong 

values, although the output error has converged to zero. 

This can be explained as follows. Since the richness 

condition is not satisfied, the ci estimates do not converge 

to their new values which in turn affect the performance 

of the state observer (wrong ci values used in the observer 

equation results in the wrong state estimation). Fig. 8 

shows the performance of titration curve identification 

algorithm when faced to disturbance in concentration. As 

can be seen for both cases (changing from C0 to C1 and 

from C0 to C2) the identified titration curve is close to the 

actual titration curve near the controlling pH valve. To 

evaluate the performances of controllers in presence of 

unknown component, 0.002 M of H2CO3 is added to feed 

stream at time 5 min. The results are shown in Fig. 9. As 

can be seen the GLC2 has a better performance. 

Effect of Measurement Noise: To evaluate the 

performance of control system when the measurement is 

corrupted with noise, a noise with magnitude of ± 0.1 pH 

is added to pH measurement. The results of GLC2 are 

illustrated in Fig. 10. As can be seen the controller can 

handle this level of noise fairly well. The similar 

performance will be obtained if GLC1 is used. 

Set-point Tracking: Fig. 11 depicts the performance 

of GLC2 for set-point tracking. As can be seen the 

controller can follow the desired trajectory outstandingly. 

The same result is obtained if GLC1 is used. 

 
CONCLUSIONS 

In this paper application of GLC for pH control has 

been considered. Two different adaptive linearizing 

controllers have been designed (GLC1 and GLC2). The 

first design needs observer for implementation and has 

more computational load. In designing the nonlinear 

observer for pH processes, it has been shown that if the 

system contains strong acid and strong base, the observer 

gain becomes singular. Two different methods for 

avoiding singularity have been proposed. The second 

proposed  controller  which is  designed based on reduced  
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Fig. 5: Closed-loop responses of GLC1 and GLC2 for 

changing from (a) C0 to C1 and (b) C0 to C2. 

 

state representation dose not require observer and needs 

less computational effort. Simulation results show that 

both controllers have satisfactory performances in load 

rejection and set-point tracking and they are robust to 

uncertainties in feed composition and measurement noise. 

Since design of the second controller is easier and its 

implementation requires less computational load, it is 

preferable. The difference between two designs becomes 

more evident as the number of components in the system 

increases. 

 

APPENDIX  A 

Reduced order observer design 
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Fig. 6: Input variations for changing from C0 to C1 and  

C2 : (a) GLC1  (b) GLC2. 
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10ŷ1

1
1

x̂

h
            (A.4) 

( ) ( )
+

+
+

+
=

∂

∂

−

−

42)pkpk(

)pkpk(

32pk

pk

x̂

10ŷ
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Fig. 7: State estimator performance for changing from  : (a) C0 to C1 and (b) C0 to C2 (Solid line: Real , Dash line: Estimated). 
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Fig. 8: Feed stream titration curve and its estimation for 

changing from: (a) C0 to C1 and (b) C0 to C2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Closed-loop responses of GLC1 and GLC2 for adding 

an unknown component  at time 5 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10: Closed-loop performance of GLC2 in presence of  

measurement noise for changing from : (a) C0 to C1 and (b) 

C0 to C2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Closed-loop performance of GLC2 for set point 

tracking. 
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.ŷL.

ŷ
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ŷ

x̂

ŷ
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Nomenclatures 

A                 Term depending on pH in general titration  

                                                                     curve equation 

ai                Function of pH which appears as a coefficient  

                                of the ith ionic total ion concentration 

ci                      Concentration of the ith species in the  

                                                        process stream, (mol/l) 

F                         Flow rate of the process stream, (ml/sec) 

K                                                                   Observer gain  

Kai                                     Ith dissociation constant of acid 

Kc                                                               Controller gain 

Kw                          Dissociation constant of water, (10-14) 

n                       Number of ionic species in the pH process 

pH                                                                        -log [H+] 

r                                                                    Relative order 

t                                                                        Time, (min) 

u                         Flow rate of the titrating stream, (ml/sec) 

v                                                               Linearizing input 

V                                     Volume of the mixing tank, (ml) 

xi                         Reaction invariant of ith species, (mol/l) 

X                                                          Reduced order state 

 

Greek Symbols 

αi                Concentration of the ith species in the  

                                                       titrating stream, (mol/l) 

β                                                     Linearized system pole 

θ                                     Titration curve parameters vector  

φ                                                     Vector of pH functions 
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