Influence of Deposition and Annealing Temperature on Resistivity and Nanoindentation Characteristics of Reactive Magnetic Sputtered NiO Films

Document Type : Research Article

Authors

1 Department of Physics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University Gurgaon-122001, Delhi-NCR, INDIA

2 Department of Applied Science & Humanities, Dronacharya College of Engineering, Khentawas, Farrukh Nagar, Gurugram-123506, Haryana, INDIA

3 Amity University, Jharkhand, Ranchi-834002, INDIA

4 Department of Materials Science and Engineering, 206-Worldcup-ro, Yeongtong-gu, Suwon 16499, Gyeonggi-do, Republic of KOREA

Abstract

In this study, NiO films were processed on p-type Si by magnetron sputtering technique under the mixture of argon (Ar) and oxygen (O2) gas atmosphere at room temperature and 300 0C. The microstructure, nanoindentation, and electrical properties of the NiO films were compared with the as-deposited and subsequent vacuum-annealed films at 300 0C for one hour. The grain size and phase structure of NiO films were determined by an X-ray diffraction study. The microstructure and morphology of the resultant NiO films were analyzed by Field Emission Scanning Electron Microscopy (FESEM) and transmission electron microscopy (TEM). The results show that NiO films were nanocrystalline with grain size in the range of 14-32 nm. The formation of NiSi2 was noticed at the interface of vacuum-annealed NiO films. Nanoindentation results showed an increment in the hardness of annealed NiO films over as-deposited films at the same temperature. In contrast, Van der Pauw's four-point probe method showed a reduced resistivity of vacuum-annealed NiO films which can be potential candidates for electrical contact applications.

Keywords

Main Subjects


[1] Decker C.A., Solanki R., Freeouf J.L., Carruthers J.R., Evans D.R., Directed Growth of Nickel Silicide Nanowires, Appl. Phys. Lett., 84: 1389–1391(2004).
[3] Padhan A.M., Ravikumar P., Saravanan P., Alagarsamy P., Enhanced Magnetic Properties of NiO Powders by the Mechanical Activation of Aluminothermic Reduction of NiO Prepared by a Ball Milling Process, J. Magn. Magn. Mater, 418: 253–259 (2016).
[4] Okumura T., Sugiyo T., Inoue T., Ikegami M., Miyasaka T., Nickel Oxide Hybridized Carbon Film as an Efficient Mesoscopic Cathode for Dye-Sensitized Solar Cells, J. Electrochem. Soc., 160:  H155–H159(2013).
[5] Kemary M. El., Nagy N., I. El-Mehasseb, Nickel Oxide Nanoparticles: Synthesis and Spectral Studies of Interactions with Glucose, Mater. Sci. Semicond. Process., 16:  1747–1752(2013).
[6] Kim J.,. Bae J.-U, Anderson W.A., Kim H.-M., Kim K.-B., Solid-State Growth of Nickel Silicide Nanowire by the Metal-Induced Growth Method, J. Mater. Res., 21: 2936–2940 (2006).  
[9] Carbone M., NiO-Based Electronic Flexible Devices, Appl. Sci., 12: 2839 (2022).
[10] Zhao Y., Wang H., Wu C., Z. Shi F., Gao F.B., W Li. C., G.G Wu., Zhang B.L., Du G.T., Structures, Electrical and Optical Properties of Nickel Oxide Films by Radio Frequency Magnetron Sputtering, Vacuum, 103: 14–16 (2014).
[11] I Fasaki., Koutoulaki A., Kompitsas M., Charitidis C., Structural, Electrical and Mechanical Properties of NiO thin Films Grown by Pulsed Laser Deposition, Appl. Surf. Sci. 257: 429–433(2010).
[12] Kang J.-K., Rhee S.-W., Chemical Vapor Deposition of Nickel Oxide Films from Ni(C5H5)2/O2, Thin Solid Films, 391: 57–61(2001).
[13] Desai J.D., Min S.-K., Jung K.-D., Joo O.-S., Spray Pyrolytic Synthesis of Large Area NiOx thin Films from Aqueous Nickel Acetate Solutions, Appl. Surf. Sci., 253: 1781–1786(2006).
[14] Nakaoka K., Ueyama J., Ogura K., Semiconductor and Electrochromic Properties of Electrochemically Deposited Nickel Oxide Films, J. Electroanal. Chem., 571: 93–99 (2004).
[15]Garcia-Miquel J.L., Zhang Q., Allen S.J., A Rougier., Blyr A., Davies H.O., Jones A.C., Leedham T.J., P Williams.A., Impey S.A., Nickel Oxide Sol–Gel Films from Nickel Diacetate for Electrochromic Applications, Thin Solid Films., 424: 165–170(2003).
[16] Taylor D.J., P Fleig. F., S Schwab. T., Page R.A., Sol–Gel Derived, Nanostructured Oxide Lubricant Coatings, Surf. Coat. Technol. 120–121 465–469(1999).
[17] Park J.-W., Park J.-W., Kim D.-Y.,. Lee J.-K, Reproducible Resistive Switching in Nonstoichiometric Nickel Oxide Films Grown by Rf Reactive Sputtering for Resistive Random-Access Memory Applications, J. Vac. Sci. Technol. Vac. Surf. Films., 23: 1309–1313(2005).
[19] Chen H.-L., Lu Y.-M., Hwang W.-S., Thickness Dependence of Electrical and Optical Properties of Sputtered Nickel Oxide Films, Thin Solid Films., 514: 361–365(2006).
[20] Pramanik P., Bhattacharya S., A Chemical Method for the Deposition of Nickel Oxide Thin Films, J. Electrochem. Soc., 137: 3869–3870 (1990).
[21] Pejova B., Kocareva T., M Najdoski., Grozdanov I., A Solution Growth Route to Nanocrystalline Nickel Oxide thin Films, Appl. Surf. Sci., 165: 271–278(2000).
[22] Varkey A.J., Fort A.F., Solution Growth Technique for Deposition of Nickel Oxide Thin Films, Thin Solid Films., 235: 47–50 (1993).
[25] Kumar M., Shetti N.P., Magnetron Sputter Deposited NiCu Alloy Catalysts for Production of Hydrogen through Electrolysis in Alkaline Water, Mater. Sci. Energy Technol., 1: 160–165 (2018).
[26] Brioual B., Rossi Z., Aouni A., Diani M., Addou M., Jbilou M., Electrochemical Behavior of Spray Deposited Nickel Oxide (NiO) thin Film in Alkaline Electrolyte, E3S Web Conf., 336: 00045(2022).
[27] Mandal R., Baranwal A., Srivastava A., Chandra P., Evolving Trends in Bio/Chemical Sensor Fabrication Incorporating Bimetallic Nanoparticles, Biosens. Bioelectron., 117: 546–561(2018).
[28] Saxena V., Chandra P., Pandey L.M., Design and Characterization of Novel Al-Doped ZnO Nanoassembly as an Effective Nanoantibiotic, Appl. Nanosci., 8: 1925–1941(2018).
[29] Kadian S., Arya B.D., Kumar S., S Sharma.N., Chauhan R.P., Srivastava A., Chandra P., Singh S.P., Synthesis and Application of PHT-TiO2 Nanohybrid for Amperometric Glucose Detection in Human Saliva Sample, Electroanalysis, 30: 2793–2802(2018).
[30] Hotový I., Búc D., Haščík Š., Nennewitz O., Characterization of NiO thin Films Deposited by Reactive Sputtering, Vacuum., 50: 41–44(1998).
[31] Barshilia H.C., K. Rajam S., Characterization of Cu/Ni Multilayer Coatings by Nanoindentation and Atomic Force Microscopy, Surf. Coat. Technol., 155: 195–202(2002).
[32] Kim S.-K., Seok H.-J., Kim D.-H., Choi D.-H., Nam S.-J., Kim S.-C., Kim H.-K., Comparison of NiOx thin Film Deposited by Spin-Coating or Thermal Evaporation for Application as a Hole Transport Layer of Perovskite Solar Cells, RSC Adv., 10: 43847–43852 (2020).
[34] C Luyo., Ionescu R., Reyes L.F., Topalian Z., W Estrada., Llobet E., Granqvist C.G., Heszler P., Gas Sensing Response of NiO Nanoparticle Films Made by Reactive Gas Deposition, Sens. Actuators B Chem., 138: 14–20(2009).
[35] Abirami A.,  Wilson K.S., Structural and Optical Properties on Nickel Oxide thin Films Prepared by Simple Nebulizer Spray Technique, In: Jodhpur, India, 2265 (1): 030561 (2020).
[36] Salunkhe P., A V M.A., Kekuda D., Investigation on Tailoring Physical Properties of Nickel Oxide thin Films Grown by dc Magnetron Sputtering, Mater. Res. Express., 7(1): 016427(2020).
[37] Jamal M.S., Chowdhury M.S., Bajgai S., Hossain M., Laref A., Jha P.K., Techato K., Comparative Studies on the Morphological, Structural and Optical Properties of NiO thin Films Grown by Vacuum and Non-Vacuum Deposition Techniques, Mater. Res. Express., 8: 126404(2021).
[38] Ivanova T., Harizanova A., Shipochka M., Vitanov P., Nickel Oxide Films Deposited by Sol-Gel Method: Effect of Annealing Temperature on Structural, Optical, and Electrical Properties, Materials., 15: 1742 (2022).
[39] Oliveira F.S., Cipriano R.B., da Silva F.T., E Romão.C., dos Santos C.A.M., Simple Analytical Method for Determining Electrical Resistivity and Sheet Resistance Using the Van Der Pauw Procedure, Sci. Rep. 10: 16379(2020).
[40] Lin Y.-R., Tsai W.-T., Wu Y.-C., Lin Y.-H., Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact, Materials., 10: 1276: (2017).
[42] Li Y., Gao Y., Yao Y., Sun S., Khatiwada D., Pouladi S., Galstyan E., Rathi M., Dutta P., Litvinchuk A.P., Ryou J.-H., Selvamanickam V., Direct Synthesis of Biaxially Textured Nickel Disilicide Thin Films by Magnetron Sputter Deposition on Low-Cost Metal Tapes for Flexible Silicon Devices, Appl. Phys. Lett., 114: 083502(2019).
[43] Jabir S.A.-A., Harbbi K.H., A Comparative Study of Williamson-Hall Method and Size-Strain Method through X-Ray Diffraction Pattern of Cadmium Oxide Nanoparticle, In AIP Conference Proceedings, 2307(1): 020015 (2020).
[44] Qiu H., Tian Y., Hashimoto M., Evolution of Interface Diffusion and Structure of Ni Films Sputter-Deposited on Si(001), Vacuum, 70: 493–497(2003).