
APENDIX 

The governing partial differential equations of our 

problem are: 
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To transform the above system of equations into Ordinary 

ones, we will utilize appropriate transformations given 

above in (8). 

Since in terms of stream function, the velocity components 

have form: 
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By taking derivatives, we obtain: 
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Now, by putting values of derivatives in Eq. (1), it is 

identically satisfied. 

In the similar manner, Substitution of values of derivatives 

in Eq. (2) yields the form: 
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By simplifying above equation, we have obtained Eq. (9): 
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Similarly, by attaining derivatives and substituting their 

values, we have converted Eqs. (3)-(5) into Eqs. (10)- (12) 

respectively. 


