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Standard Solution Procedure for the Developed Model  

The CVs and the nodes are defined on the basis of a numerical grid as shown in Fig. A1(a and b) where point P is the 

grid and points N and S are North and South neighbors respectively for the one-dimensional model being considered. 

 

                                         
                                                                    (a)                                                                                 (b) 

 

Fig. A1: (a) Locations of the control-volume faces for the discretization. (b) Grid used in developing discretized 

 

Applying the Finite Volume Difference, FVD method to non-dimensionalized Eq. [14]. 

Integration form of the equation with respect to non-dimension-time, T and the control volume, and the X is  

the non-dimension height of the medium. 

                                                         [A1] 

Integrating over the control volume and dividing through by and integrating over non-dimension time, T gives 

Eq. [A2] 

                                 [A2] 

Applying the Fully Implicit method, which is recommended for general-purpose transient problems because of its 

robustness and unconditional stability, setting . The stability for any size of time is attributed to the fact that all 

coefficients are positive, and its accuracy is first order in time, small time steps are needed to ensure the accuracy of the 

results. This gives Eq. [A3] 

                            [A3] 
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Applying the Quick scheme for convection terms in the equation and considering only the positive direction of flow 

(due to gravity), that is Fs >0, and Fn> 0. 

                    [A4] 

Let  and b is the linearized form of the source term and collect like the term   

                                    [A5] 

Linearization of the source term using the standard format 

 

Where                                                                                                                                                            [A6] 

Differentiating Eq. [A6] with respect to W and substituting into the standard format give Eq. [A7] and [A8] respectively. 

                                                                                                     [A7] 

                                                                                                                     [A8] 

Therefore,  

                                                                                                                            [A9] 

 and                                                                                                                  [A10] 

 

By simplification of equation [A5], the Equation becomes,  

     

6 3 1

8 8 81 1

6 3 1

8 8 8

P S N s

o

P P S P P N

PS NP

N P NN n

m

i

W W W Pe
X

W W W W W W
T X X

W W W Pe

W
X

H W

 



  
             

         
  

 


PN SPX X X    s nPe Pe Pe 

1 1 6 3 1 3 1 6

8 8 8 8 8

8

P S N

o

P NN

X Pe Pe Pe Pe Pe
W W W

T X X X X

X Pe
W W b

T

     
              

         


 



 
*

* o

P P

S
S S W W

w

 
   

 

m

i

W
S

H W






 

   
2 2

.1i o m m o m i
P P

i o i o

P P

H W WS H

W H W H W

   
 

  

 
 2

m o m i
oP

P Pi o i o
P P

W H
S W W

H W H W

 
  

 

 
2

m i m i

c Pi o i o
P P

H H
S W

H W H W

 
 
  
  
 

 
2

m i

P
i o

P

H
S

H W




  

20

2

m

P
u

i o

P

W
S

H W








                             [A11] 

Where Sp is the Source term obtained from the linearization of the source term. 

The general discretization equation in standard form for neighboring nodes (except for the first and last nodes which 

have to be treated separately) is  

                                                                                                       [A12] 

Discretization at the First node, A 

                                                                        (A13) 

By a collection of like terms, Eq. [A13] becomes 

                   [A14] 

By simplifying Eq. [A14] results in Eq. [A15] 

                                                                                            [A15] 

The discretization equation for the first node is given in Eq. [A16] 

                                                                                                                        [A16]   

Discretization at the Second Node, 

The discretization equation at the second Node is given in Eq. [A17] 

                                                                                    [A17] 

By collection of like terms and simplification in Eq. [A17], the equation becomes 
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                     [A18] 

 

Discretization at the Last node, B 

The discretization equation at the last Node is shown in Eq. [A19] 

                                                                   (A19) 

Collection of like terms and by simplification the Equation becomes Eq. [A20] 

                [A20] 

The equation of the last node.  

                                                                                                  (A21) 

Implementation of the boundary conditions 

The third-type boundary condition applies to the diffusion flux through boundary B equal to zero, and the value W  

at the boundary is equal to the upstream nodal value, that is . The discretization equation becomes an equation 

shown in Eq. [A22].  

                   [A22]  

                           [A23]  

The standard equation at the last node is shown in Eq. [A24] 

                                                                                                                      [A24] 
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APPENDIX B: Flowchart for the Matlab Computation   

 

Start

Input parameters: 

stop-time, dt, Φ initial

t = t + dt

 Compute diffusion coefficient (D)

 Compute convection coefficient (F)
 Compute neighbor coefficient (ap, ae, aw)

Compute source term (Su)

 assemble global matrix

 assemble global source vector
 solve Φ = (CM

-1
)SM

 Set: Φ initial =  Φ

 Compute steady state 
residual: res = || Φ - Φord ||

If res < criteria

If t   stop time

False

true

true

Display result 

and plots

Stop

Initialise Φ: Φ   Φ initial

False

 

Fig. B1: Algorithm flow for the computer programme. 

 

Note: 

||𝚽 − 𝚽𝒐𝒓𝒅||  = √∑(𝚽𝒊 − 𝚽𝒐𝒍𝒅(𝒊))
𝟐 
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