
APPENDIX A 

Solution methodology of governing equations 

Before solving the third order differential Equation (9), a 

Change of the variable is applied as bellow:   

𝜉 = 𝑓 ′ → 𝜉′ = 𝑓″ → 𝜉″ = 𝑓‴ 

This formulation is necessary to eliminate the need for 

third-order difference and to obtain a tri-diagonal system 

of linear algebraic equations at a further stage of the 

analysis. 

The first step in solving the system of nonlinear ordinary 

differential equations (9) and (12) is to convert them into a 

system of quasi-linear differential equations. 
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where k and k + 1 are the iteration indices. 

In the numerical analysis, we replace the boundary 

conditions𝜉(𝑘+1)(∞,𝜏) = 1,𝜃(𝑘+1)(∞,𝜏) =

0by𝜉(𝑘+1)(η
e
,𝜏) = 1,𝜃(𝑘+1)(𝜂𝑒,τ) = 0. 

where 𝜂𝑒is a sufficiently large value of 𝜂. 

Then, the problem has been written in a finite-difference 

form. The interval 1 ≤ 𝜂 ≤ 𝜂𝑒has been divided into (N-1) 

equal intervals and denotes the values of the dependent 

variables at 𝜂𝑖 = 1+ (𝑖 − 1)ℎwith the subscript i(= 1, 2, . 

. . ,N) where ℎ = (𝜂𝑒 − 1) (𝑁 − 1)⁄ .Substituting, as usual, 

the expressions 

hhhh

iiiiiiiiii

2
,

2
,

2
,

2 11

2

1111

2

11 −+−+−+−+ −
=

+−
=

−
=

+−
=











  

𝜕𝜉𝑖
𝜕𝜏

=
ξ
i
-ξ

i
old

Δτ
,
∂θi

∂τ
=
θi-θi

old

Δτ
 

In to equations and using the boundary conditions, at 

every time step we obtain a system of linear algebraic 

equations in a tridiagonal form:  
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In the above relations, the superscript (old) represents the 



calculated value of 𝜉and𝜃in the previous time step. 

These systems are composed of (N-2)equations for (N-2) 

unknownsξi
(k+1) ,θi

(k+1)
. It can be solved quite easily by 

usual sweeping method. Once all of𝜉𝑖
(𝑘+1)

are determined, 

𝑓𝑖
(𝑘+1)

are obtained from𝜉 = 𝑓 ′, namely: 
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executing a numerical integration. The values of 

𝜉𝑖
(𝑘+1)

and𝑓𝑖
(𝑘+1)

 obtained here are used to replace 𝜉𝑖
(𝑘)

and 

𝑓𝑖
(𝑘)

 for the next cycle. The convergence is considered 

achieved if|𝜉𝑖
(𝑘+1) − 𝜉𝑖

(𝑘)| ≤ 𝜀and|𝜃𝑖
(𝑘+1) − 𝜃𝑖

(𝑘)| ≤ 𝜀 for 

all points, where𝜀 is a prescribed accuracy criterion 

 


