The Study of Mechanical, Thermal, and Antibacterial Properties of PLA/Graphene Oxide/TiO2 Hybrid Nanocomposites

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, I.R. IRAN

2 Modern Manufacturing Technologies Research Center, Najafabad Branch, Islamic Azad University, Najafabad, I.R. IRAN

Abstract

This study attempts to improve the anti-bacterial, thermal and mechanical properties of Poly-Lactic Acid (PLA)/Graphene Oxide (GO) by incorporating the titanium oxide (TiO2) nanoparticles. For this purpose, the TiO2 nanoparticles were introduced into PLA/GO films in the content of 1, 3, and 5 wt%. The film samples were prepared by the solution casting method. The mechanical properties were evaluated by a tensile test to report the tensile strength, elongation, and elastic modulus. The thermal properties were investigated by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) tests, and the agar disk diffusion method was carried out to investigate the antibacterial properties of the film samples. The Field Emission Scanning Electron Microscopy (FE-SEM) images showed the homogenous dispersion of the nanoparticles in the PLA matrix. TGA results showed that incorporating GO and TiO2 nanoparticles improves the thermal stability of the PLA matrix considerably.

Keywords

Main Subjects


[1] Reddy M.M., Vivekanandhan S., Misra M, Bhatia S.K., Mohanty A.K., Biobased Plastics and Bionanocomposites: Current Status and Future Opportunities, Progr. Poly. Sci., 38(10-11): 1653-1689 (2013).
[2] Sinha Ray S., Polylactide-Based Bionanocomposites: A Promising Class of Hybrid Materials, AmLoun. Chem. Research., 45(10): 1710-1720 (2012).
[3] Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J., Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering: A Review, Poly. Degrad. Stabil., 95(11): 2126-2146 (2010).
[4] Drumright R.E., Gruber P.R., Henton D.E., Polylactic Acid Technology, Adva. Mate., 12(23): 1841-1846 (2000).
[5] Armentano I., Bitinis N., Fortunati E., Mattioli S., Rescignano N., Verdejo R., Lopez-Manchado M., Kenny J., Multifunctional Nanostructured PLA Materials for Packaging and Tissue Engineering, Prog. Poly. Sci., 38(10-11):1720-1747 (2013).
[6] Yu Y., Chen C.K., Law W.C., Weinheimer E., Sengupta S., Prasad P.N., Cheng C., Polylactide-Graft-Doxorubicin Nanoparticles with Precisely Controlled Drug Loading for pH-Triggered Drug Delivery, Biomacromolecules, 15(2):524-532 (2014).
[7] Fan X., Wang M., Yuan D., He C., Amphiphilic Conetworks and Gels Physically Cross-Linked via Stereocomplexation of Polylactide, Langmuir, 29(46): 14307-14313 2013).
[8] Najafi N., Heuzey M., Carreau P., Wood-Adams P.M., Control of Thermal Degradation of Polylactide (PLA)-Clay Nanocomposites Using Chain Extenders, Poly. Degrad. Stab., 97(4):554-565 (2012).
[9] Stloukal P., Pekařová S., Kalendova A, Mattausch H., Laske S., Holzer C., Chitu L., Bodner S., Maier G., Slouf M., Kinetics and Mechanism of the Biodegradation of PLA/clay nanocomposites During Thermophilic Phase of Composting Process, Wast. Manag., 42:31-40 (2015).
[10] Moghri M., Shamaee H., Shahrajabian H., Ghannadzadeh A., The Effect of Different Parameters on Mechanical Properties of PA-6/clay Nanocomposite Through Genetic Algorithm and Response Surface Methods, Inter. Nano. Lett., 5(3): 133-140 (2015).
[11] Jadidi H., Shahrajabian H., Moghri M., Using the Mass Method to Produce PVC/Clay Nanocomposite Foams: The Effect of Nano-clay and Foaming Conditions on Density and Cell Size, J. Inorg. Organo. Polym. Mater., 26(4):881-888 (2016).
[12] Scaffaro R., Botta L., Maio A., Gallo G., PLA Graphene Nanoplatelets Nanocomposites: Physical Properties And Release Kinetics of an Antimicrobial Agent, Compos. Part B: Engin., 109:138-146  (2017).
[13] Lai S.M., Hsieh Y.T., Preparation and Properties of Polylactic Acid (PLA)/silica Nanocomposites, J. Macromo. Scie., 55(3): 211-228 (2016).
[14] Gu L., Qiu J., Yao Y., Sakai E., Yang L., Functionalized MWCNTs Modified Flame Retardant PLA Nanocomposites and Cold Rolling Process for Improving Mechanical Properties, Compos. Sci. Technol., 161:39-49 (2018).
[16] Shahrajabian H., Ahmadi-Brooghani S.Y., Ahmadi S.J., Characterization of Mechanical and Thermal Properties of Vinyl-ester/TiO2 Nanocomposites Exposured to Electron Beam, J. Inorg. Organo. Polym. Mater., 23 (6):1282-1288 (2013).
[18] Mohammadnia M., Deakhshani E., Naghizadeh A., Defluoridation of Aqueous Solution by Graphene  and Graphene Oxide Nanoparticles: Thermodynamic and Isotherm Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 67-77 (2020).
[20] Liu L., Zhang J., Zhao J., Liu F., Mechanical Properties of Graphene Oxides, Nanoscale, 4(19): 5910-5916 (2012).
[21] Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S., The Chemistry of Graphene Oxide: Chem. Soci. Revi., 39(1): 228-240 (2010).
[22] Pinto A.M., Cabral J., Tanaka D.A.P., Mendes A.M., Magalhães F.D., Effect of Incorporation of Graphene Oxide and Graphene Nanoplatelets on Mechanical and Gas Permeability Properties of Poly (lactic acid) Films, Polym. Inter., 62(1): 33-40 (2013).
[23] Huang Y., Wang T., Zhao X., Wang X., Zhou L., Yang Y., Liao F., Ju Y., Poly (lactic Acid)/Graphene Oxide–ZnO Nanocomposite Films with Good Mechanical, Dynamic Mechanical, Anti-UV and Antibacterial Properties, J. Chem. Techno. Biotech., 90(9):1677-1684 (2015).
[25] Klonos P., Kripotou S., Kyritsis A., Papageorgiou G.Z., Bikiaris D., Gournis D., Pissis P., Glass Transition and Segmental Dynamics in Poly(L-lactic Acid)/ Graphene Oxide Nanocomposites, Thermo. Acta., 617: 44-53 (2015).
[26] Dočekal B., Vojtková B., Determination of Trace Impurities in Titanium Dioxide by Direct Solid Sampling Electrothermal Atomic Absorption Spectrometry, Spectro. Acta. Part B. Atom. Spectro., 62(3): 304-308 (2007).
[27] Dong H.M., Krivan V., Welz B., Schlemmer G., Determination of Trace Impurities in Titanium Dioxide by Slurry Sampling Electrothermal Atomic Absorption Spectrometry, S Spectro. Acta. Part B. Atom. Spectro., 52(12): 1747-1762 (1997).
[28] Lestari N., Wahyuni E., Aprilita N., Visible Light Antibacterial Activity of TiO2-Ag Prepared from Radiophotography Wastewater, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 866-871 (2021).
[29] Buzarovska A., PLA Nanocomposites with Functionalized TiO2 Nanoparticles, Polym. Plast. Technol. Eng., 52(3): 280-286 (2013).
[30] Li W., Zhang C., Chi H., Li L., Lan T., Han P., Chen H., Qin Y., Development of Antimicrobial Packaging Film Made from Poly (lactic acid) Incorporating Titanium Dioxide and Silver Nanoparticles, Molecules, 22(7):1170 (2017)
[31] Zhuang W., Liu J., Zhang J.H., Hu B.X., Shen J., Preparation, Characterization, and Properties of TiO2/PLA Nanocomposites by in Situ Polymerization, Polym. Compos., 30(8):1074-1080 (2009).
[32] Mohr L., Capelezzo A., Baretta C., Martins M., Fiori M., Mello J., Titanium Dioxide Nanoparticles Applied as Ultraviolet Radiation Blocker in the Polylactic Acid Biodegradable Polymer, Polym. Test., 77: 105867-105877 (2019).
[33] Fekri M., Darvishpour M., Khanmohammadi H., Rashidipour M., Synthesis and Biological Activity of a New Schiff Base Ligand Pyridazine Based, J. Chem. Heal. Ris., 9(3): 173-190 (2013).
[34] Auras R., Harte B., Selke S., Sorption of Ethyl Acetate and d‐limonene in Poly (lactide) Polymers, J. Scie. Food. Agri., 86(4):648-656 (2006).
[36] Frone A.N., Berlioz S., Chailan J.F, Panaitescu D.M., Morphology and Thermal Properties of PLA–Cellulose Nanofibers Composites, Carbohyd. Polym., 91(1):377-384 (2013).
[37] Mukherjee T., Sani M., Kao N., Gupta R.K., Quazi N., Bhattacharya S., Improved Dispersion of Cellulose Microcrystals in Polylactic Acid (PLA) Based Composites Applying Surface Acetylation, Chem. Eng. Sci., 101:655-662 (2013).
[38] Ma H., Su W., Tai Z., Sun D., Yan X., Liu B., Xue Q., Preparation and Cytocompatibility of Polylactic Acid/Hydroxyapatite/Graphene Oxide Nanocomposite Fibrous Membrane, Chin. Sci. Bull., 57(23): 3051-3058 (2012).
[39] Buzarovska A., Grozdanov A., Biodegradable Poly (L‐lactic acid)/TiO2 Nanocomposites: Thermal Properties and Degradation, J. App. Polym. Sci., 123(4): 2187-2193 (2012).
[40] Fei P., Fei B., Yu Y., Xiong H., Tan J., Thermal Properties and Crystallization Behavior Of Bamboo Fiber/High‐Density Polyethylene Composites: Nano‐TiO2 Effects, J. Appl. Polym. Sci., 131(3): (2014).