Synthesis, DFT Calculations to Investigate the Electronic Structure, Absorption Electronic Spectra, Antimicrobial Activity Application, and Non-Linear Optical Analysis of Pyridinyl and Pyrimidinyl Phosphonates Schemes

Document Type : Review Article

Authors

1 Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, EGYPT

2 Department of Chemistry, Faculty of Science, King Khalid University, Abha, SAUDI ARABIA

Abstract

In this study, the structure optimized and calculations of the  electronic properties for the study of two compounds which are 2 is Diethyl {5-[(2-hydroxy-5-methylphenyl) carbonyl] -2-thioxo-1,2,3,4-tetrahydropyrimidin-4-yl}-phosphonate (2), compound 4 is Diethyl {6-amino -1-(4-chlorophenyl) -5-cyano-3- [(2-hydroxy-5-methylphenyl)carbonyl] -1,2- dihydropyridin-2-yl]}phosphonate (4) have been performed by using the DFT  method at the B3LYP/6-311++G (d, p) theory level. UV-Vis spectra, in both methanol and dioxane solvents, have been employed for two compounds 2 and 4 by density functional time-dependent theory (TD-DFT) calculations at the same level of calculation. The method of Coulomb-attenuating (CAM-B3LYP) and Corrected Linear Response Polarizable Continuum Model (CLR) PCM studied for theoretically obtaining the absorption electronic spectra in the gas phase, methanol, and dioxane, respectively; indicate a good agreement with the observed spectra and FT-IR, vibrational spectra were calculated. The GIAO method calculated the 1H and 13C NMR chemical shifts theoretically values which reflect better coincidence with the experimental chemical shifts. The dihedral angles result of calculations shows that two compounds 2 and 4 are non-planar. The stability of the two compounds 2 and 4, the hyper conjugative interactions, and the delocalization of the atomic charges was analyzed with the Natural Orbital Bond analysis (NBO). The relocation of electronic density and electronic structures were discussed. Studied functional density local descriptors, (MEP) Molecular Electrostatic Potential, molecular border orbitals, and absorption spectral. Analysis of the global descriptors revealed that compound 4 is the most reactive with an energy difference between the border orbital of ΔEgap = 3.605 eV. Furthermore, this compound 4 is the less stable, the softest, and has the greatest electronic exchange capacity of the other compound 2 studied. Studied by DFT calculations (SAR) structure-activity relationship and contacted with practical antimicrobial results for compounds 2 and 4.

Keywords

Main Subjects


[1]  Sosnovskikh V. Ya.,  Irgashev R. A., Reactions of 3-(polyfluoroacyl)chromones with Indole and N-Methylindole, Russian Chemical Bulletin, 55: 2294–2295 (2006).
[2] C. Ghosh K., Patra A., One-Pot Synthesis of Pyrano[3,4-b] Chromones from Chromone-3-­Carbaldehyde, J. Heterocycl. Chem. 45: 1529- 1543 (2008).
[3] V. Sosnovskikh Y., Moshkin V.S., Kodess M.I., Unsaturated Polyfluoroalkyl Ketones in the Synthesis of Nitrogen-Bearing Heterocycles, Tetrahedron 64: 7877– 7889 (2008).
[4] A. Plaskon S., Grygorenko O.O., Ryabukhin S.V., Recyclization of 3 Formylchromones with Binucleophiles, Tetrahedron 68: 2743-2757  (2012).
[5] Suresh Maddilaa, Satya Kumar, Avula Anil, Kumar Avula PalakonduLavanya., Efficient Organocatalytic Multicomponent Synthesis of (α-aminoalkyl) phosphonates, Arabian Journal of Chemistry, 9: 787-791 (2016).
[6] Sienczyc M., Oleksyszyn., Irreversible Inhibition of Serine Proteases - Design and in Vivo Activity of Diaryl Alpha-Aminophosphonate Derivatives, J. Curr. Med. Chem., 16: 1673 – 1687 (2009).
[7] Long N., Cai X.J., Song B.A., Yang S., Chen Z., Bhadury P.S., Lu D.Y., Jin L.H., Xue W., A Study the Kabachnik–Fields Reaction of Benzaldehyde, Cyclohexylamine, and Dialkyl Phosphites, J. Agric. Food. 56: 5242- 5250 (2008).
[8] Wang Q., Zhu M., Zhu R., Lu L., Yuan C., Xing S., Fu X., Mei Y., Hang Q., Exploration of α-aminophosphonate N-derivatives as Novel, Potent and Selective Inhibitors of Protein Tyrosine Phosphatases., Eur. J. Med. Chem. 49: 354- 364 (2012).
[9] S. Dake A., Raut D.S., Kharat K.R., Mhaske R.S., Deshmukh S.M., Pawar R., Ionic Liquid Promoted Synthesis, Antibacterial and in vitro Antiproliferative Activity of Novel Α-Aminophosphonate Derivatives, P., Bioorg. Med. Chem. Lett., 21: 2527-2532 (2011).
[10] K. Huang B., Chen Z.F., Liu Y.C., Li Z.Q., Wei J.H., Wang M., Xie X.L., Liang H., Platinum(II) Complexes with Mono-Aminophosphonate Ester Targeting Group that Induce Apoptosis Through G1 Cell-Cycle Arrest: Synthesis, Crystal Structure and Antitumour Activity, Eur. J. Med. Chem. 64: 554-562 (2013).
[11] Domingo L.R., Pérez P., Global and Local Reactivity Indices for Electrophilic/ Nucleophilic Free Radicals, Organic & Biomolecular Chemistry, 11(26): 4350- 4359 (2013).
[12] Abdel Halim S., Ibrahim M.A., Synthesis, Density Functional Theory Band Structure Calculations, Optical, and Photoelectrical Characterizations of the Novel (9-Bromo-3-cyano-5-oxo-1,5-dihydro-2H-chromeno[4,3-b] pyridin-2 ylidene) propanedinitr, J. Heterocyclic Chem. 56: 2542-2554 (2019).
[13] Abdel Halim S., Laila I. Ali, Sameh Gamal Sanad., Theoretical Calculations of Solvation 12-Crown-4 (12CN4) in Aqueous Solution and its Experimental Interaction with Nano CuSO4, Int. J. Nano Dimens., 8: 142-158 (2017).
[14] Abdel Halim S., Ali Kh. Khalil., TD-DFT Calculations, NBO Analysis and Electronic Absorption Spectra of Some Thiazolo[3,2-a] pyridine Derivatives, J. Mol. Struct. 1147: 651-667 (2017).
[15] (a) Becke A.D., A New Mixing of Hartree–Fock and Local Density-Functional Theories, J. Chem. Phys. 98: 1372-1376 (1993).
       (b) Becke A.D., Density Functional Thermochemistry, III: The Role of Exact Exchange, J. Chem. Phys. 98: 5648-5652 (1993).
[16] (a) Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B Condens Matter, 37: 785-789 (1988).
        (b) Miehlich B., Savin A., Stolt H., Preuss H., Results Obtained with the Correlation Energy Density Functional of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 157: 200-206 (1989).
[17] Stefanov B., Liu B.G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian, Gaussian Inc., Pittsburgh PA. (2003).
[18] Gaussian 09, Revision A.1, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., J.E. Peralta, F. Ogliaro, Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian, Inc., Wallingford CT, (2009).
[19] GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission K.S, (2009).
[21] D. Avci, Second and Third-Order Nonlinear Optical Properties and Molecular Parameters of Azo Chromophores: Semiempirical Analysis, Spectrochim. Acta. A, 82: 37-43 (2011).
[22] Avci D., Başoğlu A., Atalay Y., Ab initio HF and DFT Calculations on an Organic Non-Linear Optical Material, Struct. Chem., 21: 213-219 (2010).
[24] Matecki J.G.., Phosphoinositides: Tiny Lipids with Giant Impact on Cell Regulation, Trans. Met. Chem. 35: 801-811 (2010).
[25] Yanai T., Tew D., Handy N.A., New Hybrid Exchange–Correlation Functional Was Using the Coulomb-Attenuating Method (CAM-B3LYP), Chem. Phys. Lett., 393: 51-57 (2004).
[26] Koopmans T., Über die Zuordnung von Wellen funktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica, 1(1-6): 104-113 (1934).
[27] Chocholoušová J., Špirko V., Hobza P., First Local Minimum of the Formic Acid Dimer Exhibits Simultaneously Red-Shifted O–H…O and Improper, Blue-Shifted C–H…O Hydrogen Bonds, Phys. Chem., 6: 37-41 (2004).
[28] Szafran M., Komasa A., Bartoszak-Adamska E., Crystal and Molecular Structure of 4-Carboxypiperidinium Chloride (4-piperidinecarboxylic acid hydrochloride), J. Mol. Struct. 827: 101-107 (2007).
[29] Aranowska K., Graczyk J., Checinska L., Pakulska W., Ochocki., Antitumor Effect of Pt(II) Amine Phosphonate Complexes on Sarcoma Sa-180 in mice. Crystal Structure of Cis-dichlorobis(diethyl-4-pyridylmethyl- phosphonate-κN)platinum(II) hydrate, cis-[PtCl2(4-pmpe)2] · H2O, J. Pharmazie, 61: 457- 460 (2006).
[30] Tarik Ali E., Salah A. Abdel-Aziz, Somaya M. El-Edfawy, El-Hossain A. Mohamed, Somaia M. Abdel-Kariem., Synthesis and Biological Evaluations of a Series of Novel Azolyl, Azinyl, Pyranyl, Chromonyl and Azepinyl Phosphonates, Heterocycles, 87: 2513-2532 (2013).
[31] Tarik Ali E., Salah A. Abdel-Aziz, Somaya M. El-Edfawy, El-Hossain A. Mohamed, Somaia M. Abdel-Kariem., Cleavage of Diethyl Chromonyl α-Aminophosponate with Nitrogen and Carbon Nucleophiles: A Synthetic Approach and Biological Evaluations of a Series of Novel Azoles, Azines, and Azepines Containing α-Aminophosphonate and Phosphonate Groups, Synthetic Communications, 44: 3610-3629 (2014).
[32] Lide D.R., A Survey of Carbon-Carbon Bond Lengths, Tetrahedron. 17: 125-134 (1962).
[33] Reed A.R., Weinstock R.B., Weinhold F., Natural Population Analysis, J. Chem. Phys., 83: 735-745 (1985).
[34] Natorajan S., Shanmugam G., Martin S.A., Cryst. Res. Technal. 43 (2008) 561 D.S. Chemia, J. Zysss, Orlando, FL, (1987)  Bradshow D.S., Andrews D.L., Electronic Structure, Biological Activity, Natural Bonding Orbital (NBO) and Non-Linear Optical Properties (NLO) of Poly-Functions Thiazolo [3,2-a] Pyridine Derivatives. DFT Approach, J. Nonlinear Opt. Phys. Matter, 18: 285 – 295 (2009).
[35] Cheng L.., Tam W., Stevenson S.H., G. Meredith.R., Rikken G., Marder S.R., Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives, J. Phys. Chem., 95: 10631-10643 (1991).
[36] Kaatz P., Donley E.A., Shelton D.P., A Comparison of Molecular Hyperpolarizabilities from Gas and Liquid Phase Measurements, J. Chem. Phys., 108: 849-856 (1998).
[37] Gnanasambandan T., Gunasekaran S., Seshadri S., Experimental and Theoretical Study of P-Nitroacetanilide, Spectrochimica. Acta Part A: Molecular and Biomolecular Spectroscopy, 117: 557-567 (2014).
[38] Murray J.S., Sen K., Molecular Electrostatic Potentials, Conseptsana Applications, Elsevier, Amsterdam, (1996) 7 and E. Sscrocco, J. Tomasi, An Euristic Interpretation TD-DFT Calculations, NBO, NLO Analysis and Electronic Absorption Spectra of Some Novel Thiazolo[3,2-a] Pyridine Derivatives Bearing Anthracenyl Moiety, Adv. Quant. Chem. 11: 115-135(1978).
[39] Politzer P., Murray J.S., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules, Theor. Chem. Acc., 108: 134-142 (2002).
[40] Sajan D., Joseph L., Vijayan N., Karabacak M., Natural Bond Orbital Analysis, Electronic Structure, Non-Linear Properties and Vibrational Spectral Analysis of L-Histidinium Bromide Monohydrate: A Density Functional Theory, Spectrochim. Acta A, 81: 85-98 (2011).
[41] Ditchfield R., Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility, J. Chem. Phys., 56: 5688–5691 (1972).
[42] Wolinski K., Hinton J.F., Pulay P., Efficient Implementation of the Gaugeindependent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc. 112: 8251–8260 (1990).
[43] Kalinowski H.O., Berger S., Braun S., “Carbon-13 NMR Spectroscopy”, John Wiley & Sons Inc., Chicheser, (1988).
[44] Lambert J.B., Shurvell H.F., Vereit L., Cooks R.G., Stout G.H., “Organic Structural Analysis”, Academic Press, New York, (1976).
[45] Kalsi P.S., “Spectroscopy of Organic Compounds”, Academic Press, New York, (2002).