Experimental Analysis of Polymer Coated Aggregate in Comparison To Ordinary Road Material

Document Type : Research Article


1 Chemical Engineering Department, NED University of Engineering & Technology, Karachi, Sindh, Pakistan.

2 Polymer and Petrochemical Engineering Department, NED University of Engineering & Technology, Karachi, Sindh, Pakistan.


Worldwide the broad usage of plastic has resulted in the massive production of plastic pollution, which is incinerated, put in landfills and oceans. The technique of coating road aggregate with plastic has a good potential to deal with this global issue. The unique physical, mechanical and thermal properties polymer offers effective binding, less moisture retention, less susceptibility to void formation. This research will ultimately reflect plastic waste management and road enhancement. The main purpose of this experimental study is to predict and highlight the effect of varying plastic composition coating on aggregate and select the best performing sample. For this study, samples of polymer-coated aggregates of different ratios are created, further tested for their enhancement in properties. To create polymer-coated aggregate, we have used recycled aggregates, Grade 70 bitumen, and polyethylene bags from waste. To coat the aggregates used "dry-mix process."The effectiveness of the coating with varying plastic compositions was measured using seven different tests. It was hypothesized that incorporating plastic would enhance the properties of aggregate and increase the durability and workability of road materials. The tests results supported the hypothesis. Standard ranges were used to perform a comparative study between polymer-coated aggregate and conventional aggregate. Nearly all test's plastic composition >8% and less than 15% have shown good results, but the optimum value for all tests is achieved by sample with 12% plastic coating. Although this study supports that plastic incorporation is a better idea to enhance the longevity of roads, more research is required to explore the underlying mechanism of plastic coating and its long-term outcomes.