Sonochemically Synthesized Mesoporous Pyrophanite- MnTiO3/TiO2 Nanoparticles: Adsorbent for Removal of Commercial Malachite Green Dye

Document Type : Research Article

Authors

Department of Chemistry, Sant Longowal Institute of Engineering & Technology (SLIET), Longowal, Sangrur, 148106, Punjab, INDIA

Abstract

Malachite Green (MG) dye belongs to the triphenylmethane class and exhibits a noxious impact on the living being. Thus, it’s being immensely important to remove it from the environment matrix. Herein, the sonochemical synthesized adsorbent material -pyrophanite-MnTiO3/TiO2 NanoParticles (NPs) was utilized to expel the commercial Malachite Green (MG) dye from the solution. The adsorption efficacy data indicate the maximum removal of MG (90.2%) is obtained for the NPs calcinated at 1000 °C (MT1). The optimized adsorption material (MT1) is characterized by using different techniques including XRD, FE-SEM, EDX, FTIR, BJH, and BET. The XRD analysis indicates the formation of divergent phases viz. rutile TiO2 and MnTiO3. The FE-SEM indicates the formation of a nano-rod-like structure. The average size and percentage of void space of MT1 NPs are evaluated by using IMAGE J software. The hysteric loops obtain from BET and BJH plots reveal the existence of type H3 hysteresis indicating the MT1 NPs exhibit mesoporous structure. The surface area, pore volume, and pore size are 61.245 m2/g, 0.139 cm3/g, and 2.0178 nm respectively. The pH, dye concentration, and temperature of the solution are optimized for the removal of MG by using MT1 NPs. Further, the adsorption isotherms, kinetics studies, and intra-particle studies indicate that monolayered second-order diffusion occurs onto the surface of MT1 NPs. The adsorption process is endothermic, thermodynamically driven, and accompanied by an increase in entropy.

Keywords

Main Subjects


[1] Royer B., Cardoso N., Lima E., Ruiz V., Macedo T., Airoldi C., Organofunctionalized Kenyaite for Dye Removal from Aqueous Solution, J. Colloid Interf. Sci. 336: 398-405 (2009).
[2] Long R. Q., Yang R.T., Carbon Nanotubes as Superior Sorbent for Dioxin Removal, J. Am. Chem. Soc., 123: 2058-2059 (2001).
[3] Amel H., Yeddou-Mezenner N., Lounis A., Eco-Friendly Scolymus Hispanicus for the Removal of Basic Blue 41, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 511-523 (2021).
[4] Kant R., Textile Dyeing Industry an Environmental Hazard, J. Nat. Sci. 4(1): 22-27 (2012).
[7] Jaffri S.B., Ahmad K.S., Phytofunctionalized Silver Nanoparticles: Green Biomaterial for Biomedical and Environmental Applications, Rev. Inorg. Chem., 38(3): 127-149 (2018).
[8] Jaffri S.B., Ahmad K.S., Thebo Khalid H., Rehman F., Sustainability Consolidation via Employment of Biomimetic Ecomaterials with an Accentuated Photo-Catalytic Potential: Emerging Progressions, Rev. Inorg. Chem.,  000010151520200018 (2020).
[9] Raval N.P., Shah P.U., Shah N.K., Nanoparticles Loaded Biopolymer as Effective Adsorbent for Adsorptive Removal of Malachite Green from Aqueous Solution, Water Conserv. Sci. Eng., 1: 69-81 (2016).
[12] Kalkan E., Nadaroglu H. Adsorptive Removal of Acid Fuchsin Dye Using By-Product Silica Fume and Laccase-Modified Silica Fume, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 551-564 (2021). 
[14] Oliveira H. S., Almeida L. D., Nb-Doped Hematite: Highly Active Catalyst for the Oxidation of Organic Dyes in Water, Catal. Today, 240: 175-181 (2015).
[15] Malviya D., Sharma S., Sharma A., Verma S., Electrochemical Method for Dye Industry Waste Water Treatment, IRJET, 5(7): 2667-2673 (2018).
[16] Tan K.A., Morad N., Teng T.T., Norli I., Panneerselvam P., Removal of Cationic Dye by Magnetic Nanoparticle (Fe3O4) Impregnated onto Activated Maize Cob Powder and Kinetic Study of Dye Waste Adsorption, APCBEE Procedia, 1: 83-89 (2012).
[18] Sud D., Mahajan G., Kaur M. P., Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions – A Review, Bioresour. Technol. 99: 6017-6027 (2008).
[19] Dbik A. Bentahar S., Messaoud, N. E., Khomr, M.E., Lacherai A., Removal of Methylene Blue from Aqueous Solution by Tunics of the Corm of the Saffron, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 95-104 (2020).
[20] Garg U. K., Kaur M. P., Garg V. K., Sud D., Removal of Hexavalent Chromium from Aqueous Solution by Agricultural Waste Biomass, J Hazard Mater., 140(1–2): 60-68 (2007).
[21] Lehto J., Clearfield A., The Ion Exchange of Strontium on Sodium Titanate Na4Ti9O20.xH2O, J. Radioanal. Nucl. Chem., 118(1): 1-13 (1987).
[22] Yang D.J., Zheng Z.F., Zhu H.Y., Liu H.W., Gao X.P., Titanate Nanofibers as Intelligent Absorbents for the Removal of Radioactive Ions from Water, Adv. Mater. 20(14): 2777-2781 (2008).
[23] Abkenar S.D., Ganjali M.R., Hossieni M., Karimi M.S., Application of Copper Vanadate Nanoparticles for Removal of Methylene Blue from Aqueous Solution: Kinetics, Equilibrium, and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 83-92 (2019).
[25] Tahir H., Atika S., Muhammad S., Synthesis of Kaolin Loaded Ag and Ni Nanocomposites and Their Applicability for the Removal of Malachite Green Oxalate Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 11-22 (2018).
[27] Zadvarzi S.B., Khavarpour M., Mohammad Vahdat S., Meysam Baghbanian S., Ali Shokuhi R., Synthesis of Fe3O4@Chitosan@ZIF-8 Towards Removal of Malachite Green from Aqueous Solution: Theoretical and Experimental Studies, Int. J. Biol. Macromol. 168: 428-441 (2021).
[28] Delpiano G.R., Tocco D., Medda L., Magner E., Salis A., Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent, Int. J. Mol. Sci., 22: 788 (2021).
[29] Lesbani A., Taher T., Palapa N.R., Mohadi R., Mardiyanto M., Miksusanti M., Arsyad F.S., Removal of Malachite Green Dye using Keggin Polyoxometalate Intercalated ZnAl Layered Double Hydroxide, Walailak J. Sci. & Tech., 18(10): 9414-9427 (2021).
[30] Dbik A., Bentahar S., El Messaoudi N., El Khomri M., Lacherai A., Removal of Methylene Blue from Aqueous Solution by Tunics of the Corm of the SaffronIran. J. Chem. Chem. Eng. (IJCCE), 39(6): 95-104 (2020).
[31] Qiao X. Q., Hu F. C., Tian F. Y., Hou D. F., Li D. S., Equilibrium and Kinetic Studies on MB Adsorption by Ultrathin 2D MoS2 Nanosheets, RSC Adv., 6: 11631-11636 (2016).
[32] Zhou M., Chen J., Zhang Y., Jiang M., Xu S., Liang Q., Li Z., Shape-Controlled Synthesis of Golf-Like, Star-Like, Urchin-Like and Flower-Like SrTiO3 for Highly Efficient Photocatalytic Degradation and H2 Production, J. Alloys Compd., 817: 152796 (2020).
[33] Gugulothu S., Singh S.A., Madras G., Superior Adsorption Capacity of Strontium Titanate and Titania Composites for Anionic Dyes Removal, J. Environ. Chem. Eng. 5(5): 4663-4675 (2017).
[34] Farahmand T., Hashemian S., Sheibani A., ZIF-Based Zinc Titanate Composite as Sufficient Sorbent for Removal Of Congo Red from Aqueous Solutions, J. Asian Ceram. Soc. 8(3): 721-732 (2020).
[36] Didwal P. N., Mulani S. R., Patil M. S., Rupesh S. D., Photocatalytic Activity of MnTiO3 Perovskite Nanodiscs for The Removal of Organic Pollutants, Heliyon 7(6): e07297 (2021).
[37] Wang H., Gao Q., Li H.T., Gao M., Han B., Xia K.S., Zhou C.G., Simple and Controllable Synthesis of High-Quality Mntio3 Nanodiscs and their Application as a Highly Efficient Catalyst For H2O2-Mediated Oxidative Degradation, ACS Appl. Nano Mater., 1(6): 2727-2738 (2018).
[38] Ribeiro R. A. P., Andres J., Longo E., Lazaro S. R., Magnetism and Multiferroic Properties at MnTiO3 Surfaces: A DFT Study, Appl. Surf. Sci., 452: 463-472 (2018).
[39] Avci C., Aydin A., Tuna Z., Yavuz Z., Yamauchi Y., Suzuki N., Dag O., Molten Salt Assisted Self Assembly (MASA): Synthesis of Mesoporous Metal Titanate (CoTiO3, MnTiO3, and Li4Ti5O12) Thin Films and Monoliths, Chem. Mater., 26(20): 6050-6057 (2014).
[41] Brunauer S., Deming L.S., Deming W., Teller E., On A Theory of The Van Der Waals Adsorption of Gases, J. Am. Chem. Soc. 62(7): 1723-1732 (1940).
[42] Rouquerol J., Avnir D., Fairbridge C.W., Everett D.W., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K., Recommendations for the Characterization of Porous Solids (Technical Report), Pure Appl. Chem., 66(8): 1739-1758 (1994).
[44] Enhessari M., Parviz A., Karamali E., Ozaee K., Synthesis, Characterisation and Optical Properties of MnTiO3 أanopowders, J. Exp. Nanosci., 7(3): 327-335 (2012).
[45] Hu Y., Guo T., Ye X., Li Q., Guo M., Liu H., Wu Z., Dye Adsorption by Resins: Effect of Ionic Strength On Hydrophobic and Electrostatic Interactions, Chem. Eng. J., 228: 392-397 (2013).
[46] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids, J. American Chem. Soc., 38: 2221-2295 (1916).
[47] Arivoli S., Hema M., Martin P., Parsath D., Adsorption of Malachite Green onto Carbon Prepared from Borassus Bark, Arab. J. Sci. Eng., 34(2): 31-42 (2009).
[48] Pan B., Xing B., Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes, Environ. Sci. Technol. 42(24): 9005-9013 (2008).
[49] Weber T. W., Chakkravorti R. K., Pore and Solid Diffusion Models for Fixed‐Bed Adsorbers, AIChE J. 20: 228-238 (1974).
[50] Redlich O., Peterson D. L., A Useful Adsorption Isotherm, J. Phys. Chem. 63(6):1024 (1959).
[51] Ho Y. S., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochem., 34: 451-465 (1999).
[52] Ho Y.S., McKay G., Sorption of Dye from Aqueous Solution by Peat, Chem. Eng. J., 70: 115-124 (1998).
[53] Goscianska J., Ciesielczyk F., Lanthanum Enriched Aminosilane-Grafted Mesoporous Carbon Material for Efficient Adsorption of Tartrazine Azo Dye, Micropor. Mesopor. Mat., 280: 7-19 (2019).
[54] Weber W. J., Morris J. C., Kinetics of Adsorption on Carbon from Solution, J. Sanit. Eng. Div. Asce., 89(2): 31-60 (1963).
[55] Santhi T., Manonmani S., Smitha T., Kinetics and Isotherm Studies on Cationic Dyes Adsorption onto Annona Squmosa Seed Activated Carbon, Int. J. Eng. Sci. Techno., 2(3): 287-295 (2010).
[56] Yoro K.O., Amosa M.K., Sekoai P.T., Mulopo J., Daramola M.O., Diffusion Mechanism and Effect of Mass Transfer Limitation During the Adsorption of CO2 by Polyaspartamide in a Packed-Bed Unit, Int. J. Sustain. Eng. 13(1): 54-67 (2020),
[57] Aharoni C., Ungarish M., Kinetics of Activated Chemisorption. Part 2 -Theoretical Models, J. Chem. Soc. Faraday Trans., 73: 456-464 (1977).