Preparation, In-Vitro Evaluation, and Delivery of Colchicine via Polyacrylamide Hydrogel

Document Type : Research Article

Authors

1 The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P.R. CHINA

2 Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Road, Hefei 230012, Anhui, P.R. CHINA

Abstract

Hydrogels have excellent biocompatibility and are widely used in biomedical applications. However, it is still a challenge to build a hydrogel with outstanding mechanical properties and multiple functions. In this study, a polyacrylamide (PAM) hydrogel with a uniform network structure was achieved through an UltraViolet (UV)-responsive organic crosslinking agent and a higher mechanical strength PAM-Ag+ hydrogel was designed through the introduction of silver ion by metal coordination interaction. Various contents of N'N-bis(acryloyl)cysteamine (BACA)  as cross-linker, acrylamide (AM) as a monomer, and Irgacure 2959 as initiator were investigated to have an optimal combination of high strength. Thus, the PAM-Ag+ hydrogel exhibited excellent adhesive behavior that could be fixed to the human forearm and any part of the skin, such as the finger and elbow joint. In addition, the properties and biocompatibility evaluations of the tough hydrogel in medical wound dressing were investigated. Meanwhile, these results showed that PAM-Ag+ hydrogels possess high stretchable (2600%) and mechanical robust (2.55 MPa) properties. Excitingly, the release of colchicine (Col) of more than 95% in 48 h demonstrated the hydrogel's high potential in medical dressing and drug release applications by virtue of the excellent moisture retention, permeability, water tightness, swelling ratio, and biocompatibility.

Keywords

Main Subjects


[1] Giampiero G., Gianpaolo T., Jan D.B., The Skin as an Immunologic Organ, Handbook of Systemic Autoimmune D iseases, 5: 3-9 (2006).
[2] Qu J., Zhao Y., Liang Y., Xu P.X., Ma B.G., Degradable Conductive Injectable Hydrogels as Novel Antibacterial, Anti-Oxidant Wound Dressings for Wound Healing, Chemical Engineering Journal, 362: 548-560 (2019).
[3] Sandra A., Nordin A., Hwei N.M., Chin Kok-Yong, Abd Aziz I.F., Mh B., Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review, Polymers, 12(8): 1782 (2020).
[4] Shen Z., Cai N., Xue Y.N., Chan V., Yu B., Wang J.Z., Song H., Deng H., Yu F.Q., Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application, Polymers, 11(5): 808 (2019).
[5] Chen R.K., Zhu Z.Y., Ji S.F., Geng Z.J., Hou Q., Sun X.Y., Fu X.B., Sweat Gland Regeneration: Current Strategies and Future Opportunities, Biomaterials, 255: 120201 (2020).
[6] Boateng J.S., Matthews K.H., Stevens H.N.E., Eccleston G.M., Wound Healing Dressings and Drug Delivery Systems: A Review, Journal of Pharmaceutical Sciences, 97(8): 2892-2923 (2008).
[7] Khan M.A., Maqsoodur R.W., Ahmed H., Khan A., Ahmad M., Khan J., Development of Diclofenac Sodium Matrix Tablets Using Sunflower Stem Residue, American Journal of Pharmacy and Health Research, 2(7): 278-289 (2014).
[8] Roel C. Op’t Veld, Walboomers X.F., Jansen J.A., Wagener F.A.D.T.G., Design Considerations for Hydrogel Wound Dressings; Strategic and Molecular Advances, Tissue Engineering Part B, 26(3): 230-248 (2020).
[9] Peng Y.L., Wang Z.F., Zhou Y., Wang F.Y., Zhang S.N., He D.G., Deng L., Ferrocene-Functionalized Hybrid Hydrogel Dressing with High-Adhesion for Combating Biofilm, Materials Science & Engineering C, 125: 112111 (2021).
[10] Mojtaba F., Abbas S., Wound Healing: Form Passive to Smart Dressings, Advanced Healthcare Materials, 10(16): 2100477 (2021).
[11] Chen T., Chen Y.J., Rehman H.U., Chen Z., Yang Z., Wang M., Li H., Liu H.Z., Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing, ACS Applied Materials & Interfaces, 10(39): 33523-33531 (2018).
[12] Li J.Y., Mooney D.J., Designing Hydrogels for Controlled Drug Delivery, Nature Reviews Materials, 1(12): 16071 (2016).
[13] Zhao X.D., Pei D.D., Yang Y.X., Xu K., Yu J., Zhang Y.C., Zhang Q., He G., Zhang Y.F., Li A., Cheng Y.L., Chen X.S., Green Tea Derivative Drove Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment, Advanced Functional Materials, 31(18): 2009442 (2021).
[14] Chen C., Yang X., Li S.J., Zhang C., Ma Y.N., Ma Y.X., Gao P., Gao S.Z., Huang X.J., Tannic Acid-Thioctic Acid Hydrogel: A Novel Injectable Supramolecular Adhesive Gel for Wound Healing, Green Chemistry, 23(4): 1794-1804 (2021).
[15] Chen H., Cheng R.Y., Zhao X., Zhang Y.H., Tam A., Yan Y.F., Shen H.K., Zhang Y.S., Qi J., Feng Y.G., Liu L., Pan G.Q., Cui W.G., Deng L.F., An Injectable Self-Healing Coordinative Hydrogel with Antibacterial and Angiogenic Properties for Diabetic Skin Wound Repair, NPG Asia Materials, 11(1):
3 (2019).
[17] Jiao C., Zhang J.N., Liu T.Q., Peng X., Wang H.L., Mechanically Strong, Tough and Shape Deformable Poly(Acrylamide-Co-Vinyl Imidazole) Hydrogels Based on Cu Complexation, ACS Applied Materials & Interfaces, 12(39): 44205-44214 (2020).
[18] Yang C.H., Wang M.X., Haider H., Yang J.H., Sun J.Y., Chen Y.M., Zhou J.X., Suo Z.G., Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations, ACS Applied Materials & Interfaces, 5(21): 10418-10422 (2013).
[19] Stephan H., Agmal S., Michael K., Silke H., Antje T., Katrin F., Christian G., Christian K., Rudolf H., Norbert K., Silver Nanoparticles: Evaluation of DNA Damage, Toxicity and Functional Impairment in Human Mesenchymal Stem Cells, Toxicology Letters, 201(1): 27-33 (2011).
[20] Tang Q.Q., Chen C.W., Jiang Y.G., Huang J.J., Liu Y., Nthumba P.M., Gu G.S., Wu X.W., Zhao Y., Ren J.N., Engineering an Adhesive Based on Photosensitive Polymer Hydrogels and Silver Nanoparticles for Wound Healing, Journal of Material Chemistry B, 8(26): 5756-5764 (2020).
[21] Han L., Lu X., Liu K.Z., Wang K.F., Fang L.M., Weng L.T., Zhang H.P., Tang Y.H., Ren F.Z., Zhao C.C., Sun G.X., Liang R., Li Z.J., Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization, ACS Nano, 11(3):2561−2574 (2017).
[22] Chen C.Y., Yin H., Chen X., Chen T.H., Liu H.M., Rao S.S., Tan Y.J., Qian Y.X., Liu Y.W., Hu X.K., Luo M.J., Wang Z.X., Liu Z.Z., Cao J., He Z.H., Wu B., Yue T., Wang Y.Y., Xia K., Luo Z.W., Wang Y.,  Situ W.Y., Liu W.E., Tang S.Y., Xie H., Angstrom-Scale Silver Particle-Embedded Carbomer Gel Promotes Wound Healing by Inhibiting Bacterial Colonization and Inflammation, Science Advances, 6(43): eaba0942 (2020).
[23] Alexandra E.S., Cristina C., Alexandru M.G., Nanomaterials for Wound Dressings: An Up-to-Date Overview, Molecules, 25(11):2699-2724 (2020).
[24] Boateng J.S., Matthews K.H., Stevens H.N.E., Eccleston G.M., Wound Healing Dressings and Drug Delivery Systems: A Review, Journal of Pharmaceutical Sciences, 97(8): 2892-2923 (2008).
[25] Liu W.J., Sun J., Sun Y., Xiang Y., Yan Y.F., Han Z.H., Bi W., Yang F., Zhou Q.R., Wang L., Yu Y.C., Multifunctional Injectable Protein-Based Hydrogel for Bone Regeneration, Chemical Engineering Journal, 394:124875 (2020).
[26] Chen Z.M., Cai Z.W., Zhu C.J., Song X.M., Qin Y.H., Zhu M.H., Zhang T., Cui W.G., Tang H.H., Zheng H.L., Antibacterial Hydrogels: Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment, Advanced Healthcare Materials, 9(20):2070073 (2020).
[27] Xu F., Padhy H., Al-Dossary M., Zhang G.S., Behzad A.R., Stingl U., Rothenberger A., Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[Methyl Vinyl Ether-Alt-Mono-Sodium Maleate]Center dot AgNO3: Ag+/Cu2+ Ion Exchange and Effective Antibacterial Activity, Journal of Materials Chemistry B, 2(37):6406-6411 (2014).
[28] Qin H.L., Zhang T., Li H.N., Cong H.P., Antonietti M., Yu S.H., Dynamic Au-Thiolate Interaction Induced Rapid Self-Healing Nanocomposite Hydrogels with Remarkable Mechanical Behaviors, Chemistry, 3(4): 691-705 (2017).
[29] Song P., Qin H.L., Gao H.L., Cong H.P., Yu S.H., Self-Healing and Super Stretchable Conductors from Hierarchical Nanowire Assemblies, Nature Communications, 9: 2786 (2018).
[30] Qin H.L., Zhang T., Li N., Cong H.P., Yu S.H., Anisotropic and Self-Healing Hydrogels with Multi-Responsive Actuating Capability, Nature Communications, 10: 2202 (2019).
[31] Hussain I., Sayed S.M., Liu S.L., Yao F., Oderinde O., Fu G.D., Hydroxyethyl Cellulose-Based Self-Healing Hydrogels with Enhanced Mechanical Properties via Metal-Ligand Bond Interactions, European Polymer Journal, 100:219-227 (2018).
[32] Chen X.Q., Song Z.H., Li S.P., Thang N.T., Gao X., Gong X.C., Guo M.H., Facile One-Pot Synthesis of Self-Assembled Nitrogen-Doped Carbon Dots/Cellulose Nanofibril Hydrogel with Enhanced Fluorescence and Mechanical Properties, Green Chemistry, 22: 3296-3308 (2020).
[33] Xu J.J., Wang G.Y., Wu Y.F., Ren X.Y., Gao G.H., Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring, ACS Applied Materials & Interfaces, 11(28): 25613-25623 (2019).
[34] Dead H., Benyoucef A., Morallόn E., Montilla F., Reactive Insertion of PEDOT-PSS in SWCNT@Silica Composites and its Electrochemical Performance, Materials, 13(5): 1200-1210 (2020).
[35] Chen H., Peng C., Wang L., Li X.X., Yang M., Liu H.H., Qin H.L., Chen W.D., Mechanically Tough, Healable Hydrogels Synergistically Reinforced by UV-Responsive Crosslinker and Metal Coordination Interaction for Wound Healing Application, Chemical Engineering Journal, 403: 126341 (2021).
[36] Alamar A., Park S.H., Ibrahim I., Arun D., Holtz T., Dumee L.F., Lim H.N., Szekely G., Architecting Neonicotinoid-Scavenging Nanocomposite Hydrogels for Environmental Remediation, Applied materials today, 21: 100878 (2020).
[37] Hong Y., Zhou F.F., Hua Y.J., Zhang X.Z., Ni C.Y., Pan D.H., Zhang Y.Q., Jiang D.M., Yang L., Lin Q.N., Zou Y.W., Yu D.S., Arnot D.E., Zou X.H., Zhu L.Y., Zhang S.F., Ouyang H.W., A strongly Adhesive Hemostatic Hydrogel for the Repair of Arterial
and Heart Bleeds
, Nature Communications, 10(1): 2060 (2019).
[38] Cankaya N., Bulduk I., Colak A.M., Extraction, Development and Validation of HPLC-UV Method for Rapid and Sensitive Determination of Colchicine from Colchicum Autumnale L. Bulbs, Saudi Journal of Biological Sciences, 26(2): 345-351 (2019).