Removal of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), and Pb(II) from Water Solutions Using Activated Carbon Based on Cherry Kernel Shell Powder

Document Type : Research Article

Authors

1 Department of Chemistry, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, SYRIA

2 Faculty of Chemistry, Damascus University, Damascus, SYRIA

3 Department of Radiation Technology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091 Damascus, SYRIA

Abstract

In this work, a method for preparing activated carbon based on cherry kernel shell (AC-CKS) was investigated using two consecutive steps: chemical activation with H2SO4 agent and thermal activation in air. For the first time, AC-CKS product is used for the removal of numerous metal ions such Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), and Pb(II) from water solutions. The AC-CKS was characterized using EA, FTIR, SEM, EDX, and XRF techniques. The AC-CKS obtained by heating at 600 °C showed products with higher iodine numbers and invariably micro-size pores compared to those obtained by heating at 55°C and 400°C. The adsorption capacity of AC-CKS600 was tested in the removal of previously mentioned metal ions. The essential parameters affecting the removal of metal ions were studied. The results showed maximum adsorption of 99.0% for Cr(III), 91.7% for Fe(III), 62.0% for Cu(II), 59.3% for Pb(II), 42.0% for Zn(II), 28.0% for Ni(II), and 26.9% for Mn(II). The adsorption data of most metal ions fitted well with Langmuir model. The maximum adsorption capacity followed the sequence: Cr(10.75mg/g)>Fe(10.15mg/g)>Cu(7.58mg/g)>Pb(7.36mg/g)>Zn(6.08mg/g)>Ni(2.83g/g)>Mn(2.29 mg/g). The adsorption kinetics was tested for the pseudo-first order and pseudo-second order. The rate constants of adsorption for all studied metal ions were calculated. Good correlation coefficients (R2>0.9972) were obtained for the pseudo-second-order kinetic model showing that all metal ions uptake processes followed the pseudo-second-order rate expression. Desorption studies showed the quantitative recovery of metal ions in the range of 89.4% for Pb(II) to 94% for Cr(III). According to the adsorption model applied in this work, AC-CKS600 product could be recommended for the removal of Cr(III), Fe(III), Cu(II), Pb(II), and Zn(II) from aqueous solutions. 

Keywords

Main Subjects


[1] Kapoor A., Viraraghavan T., Fungal Biosorption - An Alternative Treatment Option for Heavy Metal Bearing Wastewaters: A Review, Bioresour. Technol., 53(3): 195-206 (1995).
[2] Blazquez G., Hernainz F., Calero M., Ruiz-Nunez L.F., Removal of Cadmium Ions with Olive Stones: The Effect of Some Parameters, Process Biochem., 40(8): 2649-2654 (2005).
[3] Diniz V., Volesky B., Desorption of Lanthanum, Europium and Ytterbium From Sargassum, Sep. Purif. Technol., 50(1): 71-76 (2006).
[4] Bhatnagar A., Hogland W., Marques M., Sillanpää M., An overview of the Modification Methods of Activated Carbon for its Water Treatment Applications, Chem. Eng. J., 219: 499–511 (2013).
[5] Ukanwa K.S., Patchigolla K., Sakrabani R., Anthony E., Mandavgane S., A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass, Sustainability,11(22): 6204 (2019).
[6] Esmaeili A., Ghasemi S., Zamani F., Investigation of Cr(VI) Adsorption by Dried Brown Algae Sargassum sp. and Its Activated Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 11-19 (2012).
[8] Hussain Sh., Abid M.A., Munawar Kh. Sh., Saddiqa A., Iqbal M., Suleman M., Hussain M., Riaz M., Ahmad T., Abbas A., Rehman M., Amjad M., Choice of Suitable Economic Adsorbents for the Reduction of Heavy Metal Pollution Load, Pol. J. Environ. Stud., 30(3): 1969-1979 (2021).
[10] Wan Ngah W.S., Hanafiah M.A.K.M., Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review, Bioresour. Technol.,99: 3935-3948 (2008).
[12] Banerjee K., Ramesh S., Gandhimathi R., Nidheesh P., Bharathi K., A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions, Iran. J. Energy Environ., 3(2): 143-156 (2012).
[13] Massie B.J., Sanders T.H., Dean L.L., Removal of Heavy Metal Contamination from Peanut Skin Extracts by Waste Biomass Adsorption, J. Food Process. Eng., 38: 555 (2015).
[14] Ordoudi S.A., Bakirtzi Ch., Tsimidou M.Z., The Potential of Tree Fruit Stone and Seed Wastes in Greece as Sources of Bioactive Ingredients, Recycling, 3(9): p.19 (2018).
[15] Šoštari´T., Petrović M.,  Milojković J., Lačnjevac Č., Ćosovi´A., Stanojević M., Stojanović M., Application of Apricot Stone Waste from Fruit Processing Industry in Environmental Cleanup: Copper Biosorption Study, Fruits,70: 271-280 (2015).
[16] Barral-Martinez M., Fraga-Corral M., Garcia-Perez P., Simal-Gandara J., Prieto M.A., Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry, Foods,10(8): 1793 (2021).
[17] Alharbi K.L., Raman J., Shin H.-J., Date Fruit and Seed in Nutricosmetics, Cosmetics,8(3): 59 (2021).
[18] Bryś A., Bryś J., Obranović M., Škevin D., Głowacki S., Tulej W., Ostrowska-Ligęza E., Górska A., Application of the Calorimetric Methods to the Characteristics of Seeds from Olives, Proceedings, 70(1): 90 (2021).
[19] Olivares-Marín M., Fernández-Gonzále C., Macías-García Z.A., Gómez-SerranoV., Preparation of Activated Carbon from Cherry Stones by Physical Activation in Air. Influence of the Chemical Carbonization with H2SO4, J. Anal. Appl. Pyrol., 94: 131–137 (2012).
[20] Ba S., Ennaciri K., Yaacoubi A., Alagui A., Bacaoui A., Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 107-123 ( 2018).
[21] Erdoǧan S., Önal Y., Akmil-Başar C., Bilmez-Erdemoǧlu S., Sarıcı-Özdemir Ç., Köseoǧlu E., İçduygu G., Optimization of Nickel Adsorption from Aqueous Solution by Using Activated Carbon Prepared from Waste Apricot by Chemical Activation, Appl. Surf. Sci.,252: 1324–1331(2005).
[23] Rahman M.M., Adil M., Yusof A.N.M., Ansary R.H., Yunus K., Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells, Materials,7(5): 3634-3650 (2014).
[24] Aygun A., Yenisoy-Karakas S., Duman I., Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of their Physical, Chemical and Adsorption Properties, Microporous Mesoporous Mater.,66: 189–195(2003).
[26] Altun T., Ecevit H., Cr(VI) Removal Using Fe2O3-Chitosan-Cherry Kernel Shell Pyrolytic Charcoal Composite Beads, Environ. Eng. Res.,25(3): 426-438 (2020).
[27] Demirbas E., Dizge N., Sulak M.T., Kobya M., Adsorption Kinetics and Equilibrium of Copper from Aqueous Solutions Using Hazelnut Shell Activated Carbon, Chem. Eng. J., 148: 480–487 (2009).
[28] Ferro-García M.A., Rivera-Utrilla J., Rodríguez-Gordillo J., Bautista-Toledo I., Adsorption of Zinc, Cadmium, and Copper on Activated Carbons Obtained from Agricultural By-Products, Carbon, 26: 363–373 (1988).
[29] Azam M., Wabaidur S.M., Rizwan Khan M., Al-Resayes S.I., Islam M.S., Removal of Chromium(III) and Cadmium(II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method, Molecules, 26: 3718 (2021).
[30] Khazaei I., Aliabadi M., Hamed Mosavian H.T., Use of Agricultural Waste for Removal of Cr(VI) from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 8(4): 11-23 (2011).
[31] Paredes-Doig A.L., Pinedo-Flores A., Aylas-Orejon J., Obregón-Valencia D., Sun Kou M.R., The Interaction of Metallic Ions onto Activated Carbon Surface Using Computational Chemistry Software, Adsorp. Sci. Technol., 0(0): 1–14 (2020).
[32] Krishnamoorthy R., Govindan B., Banat F., Sagadevan V., Purushothaman M., Show P.L., Date Pits Activated Carbon For Divalent Lead Ions Removal, J. Biosci. Bioeng.,128(1): 88-97 (2019).
[33] Banat F., Al-Asheh S., Al-Rousan D., A Comparative Study of Copper and Zinc Ion Adsorption on to Activated and Non-activated Date-pits, Adsorp. Sci. Technol.,20(4): 319-335(2002).
[34] Corral-Bobadilla M., Lostado-Lorza R., Somovilla-Gómez F., Escribano-García R., Effective Use of Activated Carbon from Olive Stone Waste in the Biosorption Removal of Fe(III) Ions from Aqueous Solutions, J. Clean. Prod.,294(10): 126332 (2021).
[35] Bohli Th., Quederni A., Fiol N., Villaescusa I., Evaluation of an Activated Carbon from Olive Stones Used as an Adsorbent for Heavy Metal Removal from Aqueous Phases, C.R. Chim, 18(1): 88-99 (2015).
[36] Kobya M., Demirbas E., Senturk E., Ince M., Adsorption of Heavy Metal Ions from Aqueous Solutions by Activated Carbon Prepared from Apricot Stone, Bioresour. Technol., 96(13): 1518-1521 (2005).
[37] Elamin A., Reddy M.R., Rehrah D., Activated Carbon from Almond Shells to Adsorb the Heavy Metals from Contaminated Water, Int. J. Chem. Environ. Technol.,1(3): (1-8) (2013).
[38] Yahya M.D., Abubakar H., Obayomi K.S., Lyaka Y.A., Suleiman B., Simultaneous and Continuous Biosorption of Cr and Cu (II) Ions from Industrial Tannery Effluent Using Almond Shell in a Fixed Bed Column, Results Eng., 6:100113 (2020).
[39] Taha A.A., Moustafa A.H.E., Abdel-Rahman H.H., Abd El-Hameed N.M.A., Comparative Biosorption Study of Hg(II) Using Raw and Chemically Activated Almond Shell, Adsorp. Sci. Technol., 0(0): 1–28 (2017).
[40] Rashed M.N., Fruit Stones from Industrial Waste for the Removal of Lead Ions from Polluted Water, Environ. Monit. Assess.,119: 31–41 (2006).
[41] Yan J., Lan G., Qiu H., Chen C., Liu Y., Du G., Zhang J., Adsorption of Heavy Metals and Methylene Blue from Aqueous Solution with Citric Acid Modified Peach Stone, Sep. Sci. Technol., 53(11): 1678-1688 (2018).
[42] Pap S., Boyd K.G., Taggart M.A., Sekulic M.T., Circular Economy Based Landfill Leachate Treatment with Sulphur-Doped Microporous Biochar, Waste Manag., 124: 160-171(2021).
[43] Pap S., Radonić J., Trifunović S., Adamović D., Mihajlović I., Miloradov M.V., Sekulić M.T., Evaluation of the Adsorption Potential of Eco-Friendly Activated Carbon Prepared from Cherry Kernels for the Removal of Pb2+, Cd2+ and Ni2+ from Aqueous Wastes, J. Envorn. Manage.,184: 297-306 (2016).
[44] Pietrzak R., Nowicki P., Kaźmierczak J., Kuszyǹska I., Goscianskaa J., Przepiórski J., Comparison of the Effects of Different Chemical Activation Methods on Properties of Carbonaceous Adsorbents Obtained from Cherry Stones, Chem. Eng. Res. Des.,92(6): 1187-1191 (2014).
[45] Hafizi-Atabak H. R., Ghanbari-Tuedeshki H., Shafaroudi A., Akbari M., Safaei-Ghomi J., Shariaty-Niassar M., Production of Activated Carbon from Cellulose Wastes, J. Chem. Pet. Eng., 47(1): 13-25 (2013).
[46] IAEA , Quantitative X-ray Analysis System, User's Manual and Guide to X Ray Fluorescence Technique, Version 3.6, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna, P. 161.
[47] Khuder A., Bakir M., Solaiman A., Issa H., Habil Kh., Mohammad A., Major, Minor, and Trace Elements in Whole Blood of Patients with Different Leukemia Patterns, Nukleonika, 57(3): 389−399 (2012).
[50] Barakat M.A., New Trends in Removing Heavy Metals from Industrial Wastewater, Arab. J. Chem., 4(4): 361-377 (2011).
[51] Marín-Rivera J.V., Martínez-Girón J., Quintero-Angel M., Effectiveness of Vertical Subsurface Wetlands for Iron and Manganese Removal From Wastewater in Drinking Water Treatment Plants, Univ. Sci., 24(1): 135-163 (2019).
[52] Hema M., Srinivasan K., Uptake of Toxic Metals from Wastewater by Activated Carbon from Agro Industrial by-Product, Indian J. Eng. Mater. Sci.,17: 373-381(2010).
[53] Sugumaran P., Priya S.V., Rauichandran P., Seshadri S., Production and Characterization of Activated Carbon from Banana Empty Fruit Bunch and Delonix Regia Fruit Pod, J.Sustain Ener. Environ., 3: 125–132 (2012).
[54] Sahira J., Mandira A., Prasad B.P., Ram R.P., Effect of Activating Agents on the Activated Carbons Prepared from Lapsi Seed Stone, Res. J. Chem. Sci., 3(5): 19–24 (2013).
[55] Roger M., Pettersen R.R., Tshabalala M.A., “Cell Wall Chemistry”, from: “Handbook of Wood Chemistry and Wood Composites”, CRC Press, London, UK, p. 34-70 (2012).
[56] Nandiyanto A.B.D., Oktiani R., Ragadhita R., How to Read and Interpret FTIR Spectroscope of Organic Material, Indones. J. Sci.& Technol., 4(1): 97-118 (2019).
[57] Popescu C.M., Popescu M.C., Vasile C., Structural Analysis of Photodegraded Lime Wood by Means of FT-IR and 2D IR Correlation Spectroscopy, Int. J. Biol. Macromol., 48(4): 667–675 (2011).
[58] Solihat N.N., Sari F.P., Risanto L., Anita S.H., Fitria F., Fatriasari W., Hermiati E., Disruption of Oil Palm Empty Fruit Bunches by Microwave-assisted Oxalic Acid Pretreatment, J. Math. Fund. Sci.,49(3): 244-257 (2017).
[59] Kim M., Hwang S., Yu J.S., Novel Ordered Nanoporous Graphitic C3N4 as a Support for Pt–Ru Anode Catalyst in Direct Methanol Fuel Cell, J. Mater.Chem.,17(17): 1656-1659 (2007).
[60] Anisuzzaman S.M., Joseph C.G., Daud W.M.A.B.W., Krishnaiah D., Yee H.S., Preparation and Characterization of Activated Carbon from Typha Orientalis Leaves, Int. J. Ind. Chem., 6: 9–21(2015).
[61] Abbas S.H., Ismail I.M., Mostafa T.M., Sulaymon A.H., Biosorption of Heavy Metals: A Review, J. Chem. Sci. Technol., 3(4):74-102 (2014).
[62] Unceta N., Séby F., Malherbe J., Donard O.F.X., Chromium Speciation in Solid Matrices and Regulation: A Review, Anal. Bioanal. Chem., 397(3): 1097–1111 (2010).
[63] Ramesh S.T., Rameshbabu N., Gandhimathi R.,  Kumar M.S., Nidheesh P.V., Adsorptive Removal of Pb (II) from Aqueous Solution Using Nano-Sized Hydroxyapatite, Appl. Water. Sci., 3(1): 105–113 (2013).
[66] El-Sadaawy M., Abdelwahab O., Adsorptive Removal of Nickel from Aqueous Solutions by Activated Carbons from Doum Seed (Hyphaenethebaica) Coat, Alex. Eng. J., 53(2): 399-408 (2014).
[67] Kuroki A., Hiroto M., Urushihara Y., Horikawa T., Sotowa K.I., Avila J.R.A., Adsorption Mechanism Of Metal Ions On Activated Carbon, Adsorption, 25: 1251–1258 (2019).
[69] Doulia D., Leodopoulos Ch., Gimouhopoulos K., Rigas F., Adsorption of Humic Acid on Acid-Activated Greek Bentonite, J. Colloid Interface Sci., 340(2): 131–141 (2009).
[70] Leiva E., Tapia C., Rodríguez C., Removal of Mn(II) from Acidic Wastewaters Using Graphene Oxide–ZnO Nanocomposites, Molecules, 26, 2713, p.18 (2021).
[72] Wilson K., Yang H., Seo C.W., Marshall W.E., Select Metal Adsorption by Activated Carbon Made From Peanut Shells, Bioresour. Technol.,97:  2266–2270 (2006).
[74] Low K.S., Lee C.K., Tan S.G., Sorption of Trivalent Chromium from Tannery Waste by Moss, Environ. Technol., 18(4): 449–454 (1997).
[75] Nale B. Y., Kagbu J. A., Uzairu A., Nwankwere E. T., Saidu S., Musa H., Kinetic and Equilibrium Studies of the Adsorption of Lead(II) and Nickel(II) Ions from Aqueous Solutions on Activated Carbon Prepared from Maize Cob, Der Chemica Sinica, 3(2): 302-312 (2012).
[78] Kouakou U., Ello A.S., Yapo J.A., Trokourey A., Adsorption of Iron and Zinc On Commercial Activated Carbon, J. Environ. Chem. Ecotoxicol.,5(6): 168-171 (2013).
[79] Tran T.N., Kim D.G., Ko S.O., Adsorption Mechanisms of Manganese (II) Ions onto Acid-treated Activated Carbon., KSCE J. Civ. Eng., 22: 3772–3782 (2018).
[80] Lo S.F., Wang S.Y., Tsai M.J., Lin L.D., Adsorption Capacity and Removal Efficiency of Heavy Metal Ions by Moso and Ma Bamboo Activated Carbons, Chem. Eng. Res. Des.,90: 1397–1406 (2 0 1 2).
[81] Gebretsadik H., Gebrekidan A., Demlie L., Removal of Heavy Metals from Aqueous Solutions Using Eucalyptus Camaldulensis: An Alternate Low Cost Adsorbent, Cogent Chem.,6: 1720892 (2020).
[82] Kołodyńska D., Krukowska J., Thomas P., Comparison of Sorption and Desorption Studies of Heavy Metal Ions From Biochar and Commercial Active Carbon, Chem. Eng. J.,307: 353-363 (2017).