Removal Studies of S2- Based on SBA-15-Pb(II) Composite

Document Type : Research Article

Authors

1 Department of Basic Science, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, Jilin Province, P.R. CHINA

2 Research Center for Nanotechnology Changchun University of Science and Technology, Changchun 130022, 7186 Weixing Road, Jilin Province, P.R. CHINA

Abstract

SBA (Santa Barbara Amorphous)-15 nano mesoporous molecular sieve was successfully synthesized by hydrothermal method and after its adsorption of Pb2+ the prepared material was used to adsorb S2- from aqueous solution. The surface and pore structure of SBA-15, the (SBA-15)-Pb(II), and the composite material of S2- adsorbed by the (SBA-15)-Pb(II) were characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and low-temperature nitrogen adsorption-desorption isotherm. The effects of solution acidity, S2- concentration, contact time, and temperature on the adsorption of S2- by the (SBA-15)-Pb(II) were investigated. The optimized adsorption conditions were obtained. The adsorption rate for S2- by the (SBA-15)-Pb(II) reached 96.33 %. The change of Gibbs free energy in the adsorption process, DG°<0, can judge that the adsorption process is spontaneous. The enthalpy change in the adsorption process is less than zero, showing that the adsorption process is an exothermic reaction. The negative value of entropy change indicates that the adsorption process is a process of entropy reduction. The adsorption of S2- by the (SBA-15)-Pb(II) belongs to the pseudo-second-order kinetics. Freundlich isothermal adsorption equation can better describe the adsorption process. A novel method has been developed to adsorb S2- from wastewater.

Keywords

Main Subjects


[1] de Freitas G.R., da Silva M.G.C., Vieira M.G.A., Biosorption Technology for Removal of Toxic Metals: A Review of Commercial Biosorbents and Patents, Environ. Sci. Pollut. Res., 26: 19097-19118 (2019).
[2] Siya A.A., Shamsuddin M.R., Low A., Rabat N.E., A Review on Recent Developments in the Adsorption of Surfactants from Wastewater, J. Environ. Manage., 254: 109797 (2020).
[5] Liu C., Zeng S.L., Yang B.Q., Jia F.F., Song S.X., Simultaneous Removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2, J. Mol. Liq., 296: 111987 (2019).
[6] Badi M.Y., Esrafili A. Kalantary R.R., Azari A., Ahmadi E., Gholami M., Removal of Diethyl Phthalate from Aqueous Solution Using Persulfate-Based (UV/Na2S2O8/Fe2+) Advanced Oxidation Process, J. Mazandaran Univ. Med. Sci., 25: 122-135 (2015).
[7] Sabri, A.A., Albayati, T.M., Alazawi, R.A., Synthesis of Ordered Mesoporous SBA-15 and Its Adsorption of Methylene Blue, Korean J. Chem. Eng., 32: 1835-1841 (2015).
[8] Rahmi R., Iqhrammullah M., Audina U., Husin H., Fathana H., Adsorptive Removal of Cd(II) Using Oil Palm Empty Fruit Bunch-Based Charcoal/Chitosan-EDTA Film Composite, Sustain. Chem. Pharm., 21: 100449 (2021).
[9] Marlina, Iqhrammullah M., Darmadi, Mustafa I., Rahmi, The Application of Chitosan Modified Polyurethane from Adsorbent, Rasa. J. Chem., 12: 494-501 (2019).
[10] Marlina, Iqhrammullah M., Saleha S., Fathurrahmi, Maulina F.P., Idroes R., Polyurethane Film Prepared from Ball-Milled Algal Polyol Particle and Activated Carbon Filler for NH3-N Removal, Heliyon, 6: e04590 (2020).
[11] Iqhrammullah M., Marlina., Nus S., Adsorption Behaviour of Hazard Dye (Methyl Orange) on Cellulose-Acetate Polyurethane Sheet, IOP Conf. Ser.: Mater. Sci. Eng., 845: 012035 (2020).
[12] Castillo X., Pizarro J., Ortiz C., Cid H., Flores M., Canck E.D., Voort. P.V.D., A Cheap Mesoporous Silica from Fly Ash as An Outstanding Adsorbent for Sulfate in Water, Micropor. Mesopor. Mater., 272: 184-192 (2018).
[13] Chang X.Q., Wang W.S., Liu B.S., Huang L.Z., Subhan F., One-Step Strategic Synthesis of x%Ni–AlSBA-15 Sorbents and Properties of High Adsorption Desulfurization for Model and Commercial Liquid Fuels, Micropor. Mesopor. Mater., 268: 276-284 (2018).
[15] Diagboya P.N.E., Dikio E.D., Silica-Based Mesoporous Materials; Emerging Designer Adsorbents for Aqueous Pollutants Removal and Water Treatment, Micropor. Mesopor. Mater., 266: 252-267 (2018).
[16] Baumann A.E., Aversa G.E., Roy A., FalkM.L., Bedford N.M., Thoi V.S., Promoting Sulfur Adsorption Using Surface Cu Sites in Metal-Organic Frameworks for Lithium Sulfur Batteries, J. Mater. Chem. A., 6: 4811-4821 (2018).
[18] Wang X., Ma X., Song C., Locke D.R., SiefertS., Winana  R.E., Mollmer J., Lange M.,  Moller A., Glaser R., Molecular Basket Sorbents Polyethylenimine–SBA-15 for CO2 Capture from Flue Gas: Characterization and Sorption Properties, Micropor. Mesopor. Mater., 169: 103-111 (2013).
[19] Nandi M., Mondal J., Sarkar K., Yamauchi Y., Bhaumik A., Highly Ordered Acid Functionalized SBA-15: A Novel Organocatalyst for the Preparation of Xanthenes, Chem. Commun., 47: 6677-6679 (2011).
[20] Ding Y., Lu X.R., Dan H., Yuan S.B., Mao X.L., Controllable Synthesis of Mesoporous Materials and Its Application in Nuclear Industry, Materials Reports, 28: 38-41 (2014).
[22] Larki A., Saghanezhad S.J., Ghomi M., Recent Advances of Functionalized SBA-15 in the Separation/Preconcentration of Various Analytes:
A Review
, Microchem. J., 169: 106601 (2021).
[23] Ma Y.Q., Zhai Q.Z., Yu H., Yang M.J., Removal of Pb(Ⅱ) from Water Using Nanoscale SBA-15, Asian J. Chem., 23: 5016-5024 (2011).
[24] Brunauer S., Emmett P.H., Teller E., Adsorption of Gases in MultimolecularLayers,J. Am.Chem.Soc., 60: 309-319 (1938).
[25] Barrett E.P., Joyner L.G., Halenda P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I.Computations from Nitrogen Isotherms, J. Am. Chem. Soc., 73: 373-350 (1951).
[26] Zhai Q.Z., Wu Y.Y., Wang X.H., Synthesis, Characterization and Sustaining Controlled Release Effect of Mesoporous SBA-15/Ramipril Composite Drug, J. Incl. Phenom. Chem., 76: 300-303 (2013).
[27] Boukoussa B., Hakiki A., Moulai S., Chikh K., Kherroub D.E., Bouhadjar L., Guedal D., Messaoudi K., Mokhtar F., Hamarcha R., Adsorption Behaviors of Cationic and Anionic Dyes from Aqueous Solution on Nanocomposite Polypyrrole/SBA-15, J. Mater. Sci., 53: 7372-7386 (2018).
[28] Mirzaie M., Rashidi A., Tayebi H.A., Yazdanshenas M.E., Removal of Anionic Dye from Aqueous Media by Adsorption onto SBA-15/Polyamidoamine Dendrimer Hybrid: Adsorption Equilibri and Kinetics, J. Chem. Eng. Data, 62: 1365-1376 (2017).
[29] Hachemaoui M., Boukoussa B., Jsmail I., Mokhtar A., Taha I., Iqbal J., Hacini S., Bengueddach A., Hamacha R., CuNPs-Loaded Amines-Functionalized-SBA-15
as Effection Catalysts for Catalytic Reduction of Cationic and Anionic Dyes,
Colloid. Surface. A: Physicochem. Engin. Aspect., 623: 123729 (2021).
[31] Tian G., Geng J.X., Jin Y.D., Wang C.L., Li S.Q., Chen Z., Wang H., Zhao Y.S., Li S.J., Sorption of Uranium(VI) Using Oxime-Grafted Ordered Mesoporous Carbon CMK-5, J. Hazard. Mater., 190: 442-450 (2011).
[32] Jawad A.H., Abdulhameed A.S., Malek N.N.A. ALOthman Z.A., Statistical Optimization and Modeling for Color Removal and COD Reduction of Reactive Blue 19 Dye by Mesoporous Chitosan-Epichlorohydrin/Kaolin Clay Composite, Inter. J. Biol. Macromol., 164:4218-4230 (2020).
[34] Abdulhameed A.S., Mohammad A.T., Jawad A.H., Modeling and Mechanism of Reactive Orange 16 Dye Adsorption by Chitosan-Glyoxal/TiO2 Nanocomposite: Application of Response Surface Methodology, Desalin. Water Treat., 164: 346-360 (2019).
[37] Surip S.N., Abdulhameed A.S., Garba Z.N., Syed-Hassan S.S.A., Ismail K., Jawad A.H., H2SO4-Treated Malaysian Low Rank Coal for Mthylene Blue Dye Decolourization and Cod Reduction: Optimization of Adsorption and Mechanism Study, Surf. Interfaces, 21: 100641 (2020).
[38] Jawad A.H., Bardhan M., Islam M.A., Islam M.A., Syed-Hassan S.S.A., Surip S.N., ALOthman Z.A., Khan M.R., Insights into the Modeling, Characterization and Adsorption Performance of Mesoporous Activated Carbon from Corn Cob Residue via Microwave-Assisted H3PO4 activation, Surf. Interfaces, 21: 100688 (2020).
[39] Reghioua A., Barkat D., Jawad A.H., Abdulhameed A.S., Khan M.R., Synthesis of Schiff’s Base Magnetic Crosslinked Chitosan-Glyoxal/ZnO/Fe3O4 Nanoparticles for Enhanced Adsorption of Organic Dye: Modeling and Mechanism Study, Sustain. Chem. Pharm., 20: 100379 (2021).
[40] Singha B., Das S.K., Adsorption Removal of Cu(II) from Aqueous Solution and Industrial Effluent Using Natural/Agricultural Wastes, Colloids Surf. B: Biointerfaces, 107: 97-106 (2013).
[42] Singha B., Das S.K., Adsorption Removal of Cu(II) from Aqueous Solution and Industrial Effluent Using Natural/Agricultural Wastes, Colloids Surf. B: Biointerfaces, 107: 97-106 (2013).
[43] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids., J. Am. Chem. Soc., 38: 2221-2295 (1916).
[44] Freundlich H., Adsorption in solution, Phys. Chem. Soc., 40: 1361-1368 (1906).
[45] Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., Reporting Physisorption Data for Gas/Solid Systems, Pure. Appl. Chem., 87: 603-606 (1957).