Immobilization of Pectinase Enzyme on Hydrophilic Silica Aerogel and Its Magnetic Nanocomposite

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN

2 Department of Chemical Engineering, Ilkhchi Branch, Islamic Azad University, Ilkhchi, I.R. IRAN

Abstract

In this work, Aspergillus niger pectinase was immobilized on hydrophilic silica aerogel and its magnetic nanocomposite by adsorption method, and the performance of these supports in pectinase immobilization was compared. Physical and chemical properties of supports and the immobilized pectinase were characterized by Brunauer–Emmett–Teller (BET) analysis, Field Emission Scanning Electron Microscope (FESEM), Fourier Transforms InfraRed (FT-IR) spectroscopy, and Vibrating Sample Magnetometer (VSM). The results showed that the pectinase was successfully immobilized onto both supports. The kinetics of the immobilized pectinase followed the Michaelis–Menten model. The maximum reaction rate (Vmax) and affinity of immobilized pectinase to the substrate (Km) in pure silica aerogel were higher than in magnetic silica aerogel. The maximum monolayer adsorption capacity of the pure silica aerogel (qmax=129.17 mg/g) was higher than magnetic silica aerogel (qmax=53.42 mg/g) based on Langmuir isotherm. The thermal stability of the immobilized pectinase was improved toward free pectinase. The reusability tests of immobilized pectinase showed that magnetic silica aerogel had better operational stability than pure silica aerogel because of higher mechanical resistance and retained 57% of its initial activity after 10 repetitive cycles.

Keywords

Main Subjects


[1] de Oliveira R.L., Dias J.L., da Silva O.S., Porto T.S., Immobilization of Pectinase from Aspergillus aculeatus in Alginate Beads and Clarification of Apple and Umbu Juices in a Packed Bed Reactor, Food Bioprod. Process, 109: 9-18 (2018).
[2] Ramirez H.L., Briones A.I., Úbeda J., Arevalo M., Immobilization of Pectinase by Adsorption on an Alginate-Coated Chitin Support, Biotecnol. Apl., 30: 101-104 (2013).
[3] Ramirez H.L., Gómez Brizuela L., Úbeda Iranzo J., Arevalo-Villena M., Briones Pérez A.I., Pectinase Immobilization on a Chitosan-Coated Chitin Support, J. Food Process Eng., 39(1): 97-104 (2016).
[4] Tutar H., Yilmaz E., Pehlivan E., Yilmaz M., Immobilization of Candida Rugosa Lipase on Sporopollenin from Lycopodium Clavatum, Int. J. Biol. Macromol., 45: 315-320 (2009).
[5] Sheldon R.A., Basso A., Brady D., New Frontiers in Enzyme Immobilisation: Robust Biocatalysts for a Circular Bio-Based Economy, Chem. Soc. Rev., 50: 5850-5862 (2021).
[6] Amirkhani L., Moghaddas J., Jafarizadeh-Malmiri H., Candida rugosa Lipase Immobilization on Magnetic Silica Aerogel Nanodispersion, RSC Adv., 6(15): 12676-12687 (2016).
[7] Amirkhani L., Moghaddas J., Jafarizadeh H., Optimization of Biodiesel Production Using Immobilized Candida rugosa Lipase on Magnetic Fe3O4-Silica Aerogel, Iran. J. Chem. Chem. Eng. (IJCCE), 38(2): 193-201 (2019).
[8] Abideen Idowu A., Sarafadeen Olateju K., Oluwatobi Samson A., Synthesis of MnFe2O4 Nanoparticles for Adsorption of Digestive Enzymes: Kinetics, Isothermal and Thermodynamics Studies, Int. J. Nano Dimens., 10(4): 330-339 (2019).
[9] Dal Magro L., de Moura K.S., Backes B.E., de Menezes E.W., Benvenutti E.V., Nicolodi S., Klein M.P., Fernandez-Lafuente R., Rodrigues R.C., Immobilization of Pectinase on Chitosan-Magnetic Particles: Influence of Particle Preparation Protocol on Enzyme Properties for Fruit Juice Clarification, Biotechnol. Rep., 24: e00373 (2019).
[10] Mohammadi M., Khakbaz Heshmati M., Sarabandi K., Fathi M., Lim L.-T., Hamishehkar H., Activated Alginate-Montmorillonite Beads as an Efficient Carrier for Pectinase Immobilization, Int. J. Biol. Macromol., 137: 253-260 (2019).
[11] Mohammadi M., Rezaei Mokarram R., Shahvalizadeh R., Sarabandi K., Lim L.-T., Hamishehkar H., Immobilization and Stabilization of Pectinase on an Activated Montmorillonite Support and Its Application in Pineapple Juice Clarification, Food Biosci., 36: 100625 (2020).
[12] Rajdeo K., Harini T., Lavanya K., Fadnavis N.W., Immobilization of Pectinase on Reusable Polymer Support for Clarification of Apple Juice, Food Bioprod. Process, 99: 12-19 (2016).
[13] Delcheva G., Pishtiyski I., Dobrev G., Krusteva S., Immobilization of Aspergillus Niger Pectinase on Polyacrylonitrile Copolymer Membrane, Trends Appl. Sci. Res., 2: 419-425 (2007).
[14] Chauhan S., Vohra A., Lakhanpal A., Gupta R., Immobilization of Commercial Pectinase (Polygalacturonase) on Celite and Its Application in Juice Clarification, J. Food Process. Preserv., 39(6): 2135-2141 (2015).
[15] Echavarría A.P., García-Valls R., Torras C., Pagan J., Ibarz A., Effect of Pectinase Immobilization in a Polymeric Membrane on Ultrafiltration of Fluid Foods, Sep. Sci. Technol., 47(6): 796-801 (2012).
[16] Adalberto P.R., José dos Santos F., Golfeto C.C., Costa Iemma M.R., Ferreira de Souza D.H., Cass Q.B., Immobilization of Pectinase from Leucoagaricus Gongylophorus on Magnetic Particles, Analyst., 137(20): 4855-4859 (2012).
[17] Wu R., He B.-H., Zhao G.-L., Qian L.-Y., Li X.-F., Immobilization of Pectinase on Oxidized Pulp Fiber and its Application in Whitewater Treatment, Carbohydr. Polym., 97: 523-529 (2013).
[18] Rehman H.U., Aman A., Zohra R.R., Qader S.A.U., Immobilization of Pectin Degrading Enzyme from Bacillus licheniformis KIBGE IB-21 using Agar-Agar as a Support, Carbohydr. Polym., 102: 622-626 (2014).
[19] Alagöz D., Tükel S.S., Yildirim D., Immobilization of Pectinase on Silica-Based Supports: Impacts of Particle Size and Spacer Arm on the Activity, Int. J. Biol. Macromol., 87: 426-432 (2016).
[20] Lei Z., Bi S., The Silica-Coated Chitosan Particle from a Layer-By-Layer Approach for Pectinase Immobilization, Enzyme Microb. Technol., 40(5): 1442-1447 (2007).
[23] Gao S., Wang Y., Wang T., Luo G., Dai Y., Immobilization of Lipase on Methyl-Modified Silica Aerogels by Physical Adsorption, Bioresour. Technol., 100(2): 996-999 (2009).
[24] Kharrat N., Ali Y.B., Marzouk S., Gargouri Y.-T., Karra-Châabouni M., Immobilization of Rhizopus oryzae Lipase on Silica Aerogels by Adsorption: Comparison with the Free Enzyme, Process Biochem., 46: 1083-1089 (2011).
[25] Nassreddine S., Karout A., Lorraine Christ M., Pierre A.C., Transesterification of a Vegetal Oil with Methanol Catalyzed by a Silica Fibre Reinforced Aerogel Encapsulated Lipase, Applied Catalysis A: General, 344(1-2): 70-77 (2008).
[26] Guisan J.M., Immobilization of Enzymes and Cells, Part of the Methods in Biotechnology, Springer Science & Business Media, 22 (2006).
[27] Mosafa L., Shahedi M., Moghadam M., Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification, J. Chin. Chem. Soc., 61(3): 329-336 (2013)
[28] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 193(1): 265-275 (1951).
[29] Mahesh M., Arivizhivendhan K.V., Maharaja P., Boopathy R., Hamsavathani V., Sekaran G., Production, Purification and Immobilization of Pectinase from Aspergillus ibericus onto Functionalized Nanoporous Activated Carbon (FNAC) and its Application on Treatment of Pectin Containing Wastewater,
J. Mol. Catal. B: Enzym., 133: 43-54 (2016).
[30] Talbert J.N., Goddard J.M., Enzymes on Material Surfaces, Colloids Surf. B: Biointerfaces, 93: 8-19 (2012).
[31] Zdarta J., Meyer A.S., Jesionowski T., Pinelo M., A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility, Catalysts, 8(3): 92(2018).
[32] Tu M., Pan X., Saddler J.N., Adsorption of Cellulase on Cellulolytic Enzyme Lignin from Lodgepole Pine, J. Agric. Food Chem., 57(17): 7771-7778 (2009).
[34] Kujawa J., Głodek M., Li G., Al-Gharabli S., Knozowska K., Kujawski W., Highly Effective Enzymes Immobilization on Ceramics: Requirements for Supports and Enzymes, Sci. Total Environ. 801: 149647 (2021).
[35] Fang G., Chen H., Zhang Y., Chen A., Immobilization of Pectinase onto Fe3O4@SiO2–NH2 and its Activity and Stability, Int. J. Biol. Macromol., 88: 189-195 (2016).