Some Chemical Properties and Biological Activity of an Endemic Plant Tripleurospermum callosum as a Case Study

Document Type : Research Article

Author

Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, TURKEY

Abstract

T. callosum an endemic plant, used in this study, efficiently inhibited enzymes, with IC50 values of 28.87 mg/mL, 15.75 mg/mL, 36.47 mg/mL, and 60.0 mg/mL, for AChE, BChE, α-Gly, and GST respectively. The antioxidant activities of the water and methanol extracts of T. callosum were investigated using four in vitro techniques. The antioxidant activity of water extract against ABTS radical was very strong as in the case of standards. Rosmarinic acid (2080.4 µg /g), quercetin-3-D-glycoside (853.8 µg /g), and shikimic acid (784.8 µg /g) were detected as the most intensive phenolic compound in T. Callosum by using the advanced LC-MS/MS technique. The computational screening of the studied ligands revealed the docking energies in the range of -4.217to -9.027kcal/mol for used enzymes. Rosmarinic acid and quercetin 3-O-glucoside showed binding energies of < -8 kcal/mol with AchE and BChE respectively. In conclusion, the biological activities of the plant might be due to its rich chemical composition.

Keywords

Main Subjects


[1] Köksal E., Tohma H., Kılıç Ö., Alan Y., Aras A., Gülçin İ., Bursal E., Assessment of Antimicrobial and Antioxidant Activities of Nepeta Trachonitica: Analysis of its Phenolic Compounds Using HPLC-MS/MS, Sci. Pharm., 85(2):24. (2017).
[3] Aras A., Dogru M., Bursal E., Determination of Antioxidant Potential Of Nepeta Nuda Subsp. Lydiae, Anal. Chem. Lett., 6(6): 758-765 (2016).
[6] Erdoğan T.F., Antimicrobial and Cytotoxic Activities of Tripleurospermum Parviflorum (Willd.), Marmara Pharm. J., 17: 12-14 (2013).
[7] Ćavar Zeljković S., Ayaz F.A., Inceer H., Hayirlioglu-Ayaz S., Colak N., Evaluation of Chemical Profile and Antioxidant Activity of Tripleurospermum Insularum, a New Species from Turkey. Nat Prod. Res., 29(3): 293-296 (2015).
[8] Mouffok S., Haba H., Lavaud C., Long C., Benkhaled M., Chemical Constituents of Centaurea Omphalotricha Coss. & Durieu ex Batt. & Trab, Rec Nat. Prod., 6(3): 292-295 (2012).
[9] Erel S.B., Karaalp C., Bedir E., Kaehlig H., Glasl S., Khan S., Krenn L., Secondary Metabolites of Centaurea Calolepis and Evaluation of Cnicin for Anti-Inflammatory, Antioxidant, and Cytotoxic Activities, Pharm Biol., 49(8): 840-849 (2011).
[10] Al-Saleem M.S., Awaad A.S., Alothman M.R., Alqasoumi S.I., Phytochemical Standardization and Biological Activities of Certain Desert Plants Growing in Saudi Arabia, Saudi Pharm J., 26(2): 198-204 (2018).
[11] Yoruk O., Gur F., Uyanik H., Yasar M., Mutlu V., Altas E., Baysal E., Taysi S., Antioxidant Effects of Nigella Sativa in the Treatment of Experimentally Induced Rhinosinusitis, Maced. J. Med. Sci., 3(2): 132-137 (2010).
[12] Sokamte T., Mbougueng P., Tatsadjieu N., Sachindra N., Phenolic Compounds Characterization and Antioxidant Activities of Selected Spices from Cameroon, S. Afr. J. Bot., 121: 7-15 (2019).
[13] Huyut Z., Beydemir Ş., Gülçin İ., Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds, Biochem Res Int., 2017 (2017).
[14] Toghueo R.M.K., Boyom F.F., Endophytes from Ethno-Pharmacological Plants: Sources of Novel Antioxidants-A Systematic Review, Biocatal. Agric. Biotechnol., 22: 101430 (2019).
[16] Raghuvanshi R., Nuthakki V.K., Singh L., Singh B., Bharate S.S., Bhatti R., Bharate S.B., Identification of Plant-Based Multitargeted Leads for Alzheimer's Disease: in-vitro and in-vivo Validation of Woodfordia Fruticosa (L.) Kurz, Phytomedicine; 91: 153659 (2021).
[17] Türkan F., Atalar M.N., Aras A., Gülçin İ., Bursal E., ICP-MS and HPLC Analyses, Enzyme Inhibition and Antioxidant Potential of Achillea Schischkinii Sosn, Bioorg Chem., 94: 103333 (2020).
[18] Yates K., Pohl .F, Busch M., Mozer A., Watters L., Shiryaev A., Lin P.K.T., Determination of Sinapine in Rapeseed Pomace Extract: Its Antioxidant and Acetylcholinesterase Inhibition Properties, Food Chem., 276:768-775 (2019).
[19] Ajayi O., Aderogba M., Obuotor E., Majinda R., Acetylcholinesterase Inhibitor from Anthocleista Vogelii Leaf Extracts, J. Ethnopharmacol., 231: 503-506 (2019).
[20] Turkan F., Cetin A., Taslimi P., Gulcin I., Some Pyrazoles Derivatives: Potent Carbonic Anhydrase, Alpha-Glycosidase, and Cholinesterase Enzymes Inhibitors, Arch Pharm (Weinheim), 351(10): e1800200 (2018).
[21] Allocati N., Masulli M., Di Ilio C., Federici L., Glutathione Transferases: Substrates, Inhibitors and Pro-Drugs in Cancer and Neurodegenerative Diseases, Oncogenesis, 7(1): 1-15 (2018).
[22] Taslimi P., Caglayan C., Farzaliyev V., Nabiyev O., Sujayev A., Turkan F., Kaya R., Gulçin İ., Synthesis and Discovery of Potent Carbonic Anhydrase, Acetylcholinesterase, Butyrylcholinesterase, and Α‐Glycosidase Enzymes Inhibitors: The Novel N, N′‐Bis‐Cyanomethylamine and Alkoxymethylamine Derivatives, J. Biochem. Mol. Toxicol., 32(4): e22042. (2018).
[23] Aras A., Bursal E., Türkan F., Tohma H., Kılıç Ö., Gülçin İ., Köksal E., Phytochemical Content, Antidiabetic, Anticholinergic, and Antioxidant Activities of Endemic Lecokia Cretica Extracts, Chem Biodivers; 16(10): e1900341 (2019).
[25] Aras A., Bursal E., Alan Y., Turkan F., Alkan H., Kılıç Ö., Polyphenolic Content, Antioxidant Potential and Antimicrobial Activity of Satureja Boissieri, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 209-219 (2018).
[27] Tohma H., Gülçin İ., Bursal E., Gören A.C., Alwasel S.H., Köksal E., Antioxidant Activity and Phenolic Compounds of Ginger (Zingiber officinale Rosc.) Determined by HPLC-MS/MS, Journal of Food Measurement and Characterization, 11(2): 556-566 (2017).
[28] Köksal E., Bursal E., Gülçin İ., Korkmaz M., Çağlayan C., Gören A.C., Alwasel S.H., Antioxidant Activity and Polyphenol Content of Turkish Thyme (Thymus vulgaris) Monitored by Liquid Chromatography and Tandem Mass Spectrometry, Int. J. Food Prop., 20(3): 514-525 (2017).
[29] Bousetla A., Keskinkaya H.B., Bensouici C., Lefahal M., Atalar M.N., Akkal S., LC-ESI/MS-Phytochemical Profiling with Antioxidant and Antiacetylcholinesterase Activities of Algerian Senecio Angulatus Lf Extracts, Nat. Prod. Res., 1-7 (2021).
[30] Bursal E., Yilmaz M.A., Izol E., Türkan F., Atalar M.N., Murahari M., Aras A., Ahmad M., Enzyme Inhibitory Function and Phytochemical Profile of Inula Discoidea Using in Vitro and in Silico Methods, Biophys. Chem., 106629 (2021).
[32] Işık M., Demir Y., Kırıcı M., Demir R., Şimşek F., Beydemir Ş., Changes in the Anti-Oxidant System in Adult Epilepsy Patients Receiving Anti-Epileptic Drugs, Arch. Physiol. Biochem., 121(3): 97-102 (2015).
[33] Biovia D.S., Discovery Studio Modeling Environment, Release; (2017).
[34] Aras A., Bursal E., Dogru M., UHPLC-ESI-MS/MS Analyses for Quantification of Phenolic Compounds of Nepeta Nuda Subsp. Lydiae, Journal of Applied Pharmaceutical Science Vol, 6(11):009-013 (2016).
[35] Rice-Evans C., Miller N., Paganga G., Antioxidant Properties of Phenolic Compounds, Trends Plant Sci., 2(4):152-159 (1997).
[36] Bursal E., Kinetic Properties o Peroxidase Enzyme From Chard (Beta vulgaris Subspecies cicla) Leaves, Int. J. Food. Prop., 16(6): 1293-1303 (2013).
[37] Aktepe N., Keskin C., Baran A., Atalar M.N., Baran M.F., Akmeşe Ş., Biochemical Components, Enzyme Inhibitory, Antioxidant and Antimicrobial Activities in Endemic Plant Scilla Mesopotamica Speta, J Food Process and Preserv, e15980 (2021).
[39] Martínez A., Reina M., Copper or Free Radical Scavenger? Comput Theor Chem.,1104: 1-11 (2017).
[40] Pena-Bautista C., Baquero M., Vento M., Chafer-Pericas C., Free Radicals in Alzheimer's Disease: Lipid Peroxidation Biomarkers, Clin. Chim. Acta., 491:85-90 (2019).
[41] Alisi I.O., Uzairu A., Abechi S.E., Idris S.O., Evaluation of the Antioxidant Properties of Curcumin Derivatives by Genetic Function Algorithm, J. Adv. Res., 12: 47-54 (2018).
[42] Taysi S., Memisogullari R., Koc M., Yazici A.T., Aslankurt M., Gumustekin K., Al B., Ozabacigil F., Yilmaz A., Tahsin Ozder H. Melatonin Reduces Oxidative Stress in the Rat Lens Due to Radiation-Induced Oxidative Injury, Int. J. Radiat. Biol., 84(10): 803-808 (2008).
[43] Ozcan M.M., Al Juhaimi F.Y., Antioxidant and Antifungal Activity of Some Aromatic Plant Extracts, J. Med. Plants Res., 5(1361): 2011 (2011).
[44] Taslimi P., Köksal E., Gören A.C., Bursal E., Aras A., Kılıç Ö., Alwasel S., Gülçin İ., Anti-Alzheimer, Antidiabetic and Antioxidant Potential of Satureja Cuneifolia and Analysis of its Phenolic Contents by LC-MS/MS, Arab. J. Chem., 13(3): 4528-4537 (2019).
[45] Balaydın H.T., Gülçin İ., Menzek A., Göksu S., Şahin E., Synthesis and Antioxidant Properties of Diphenylmethane Derivative Bromophenols Including a Natural Product, J. Enzyme. Inhib. Med. Chem., 25(5): 685-695 (2010).
[46] Atalar M.N., Aras A., Türkan F., Barlak N., Yildiko Ü., Karatas O.F., Alma M.H., The Effects of  Daucus Carota Extract Against PC3, PNT1a Prostate Cells, Acetylcholinesterase, Glutathione S‐Transferase, and Α‐Glycosidase; An in Vitro–In Silico Study, J. Food Biochem., e13975 (2021).
[47] Lee J.P., Kang M.-G., Lee J.Y., Oh J.M., Baek S.C., Leem H.H., Park D., Cho M.-L., Kim H., Potent Inhibition of Acetylcholinesterase by Sargachromanol I from Sargassum Siliquastrum and by Selected Natural Compounds, Bioorg. Chem., 89: 103043 (2019).
[49] Meng X.-Y., Zhang H.-X., Mezei M., Cui M., Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, Curr. Comput. Aided Drug Des., 7(2): 146-157 (2011).
[50] Junaid M., Alam M.J., Hossain M.K., Halim M.A., Ullah M.O., Molecular Docking and Dynamics of Nickel-Schiff Base Complexes for Inhibiting Β-Lactamase of Mycobacterium Tuberculosis, In Silico Pharmacol; 6(1): 6 (2018).
[51] Aamir M., Singh V.K., Dubey M.K., Meena M., Kashyap S.P., Katari S.K., Upadhyay R.S., Umamaheswari A., Singh S., In Silico Prediction, Characterization, Molecular Docking, and Dynamic Studies on Fungal SDRs as Novel Targets for Searching Potential Fungicides Against Fusarium Wilt in Tomato, Front Pharmacol., 9: 1038 (2018).