Mass Transfer Coefficients in Pulsed Column for Separation of Samarium and Gadolinium

Document Type : Research Article

Authors

1 School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran, I.R. IRAN

2 Materials and Nuclear Fuel Research School, Nuclear Science & Technology Research Institute, P.O. Box 14155-1339 Tehran, I.R. IRAN

Abstract

The mass transfer performance of a pulsed disc and doughnut column for extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA was investigated. The effects of operating parameters such as pulsation intensity, continuous and dispersed phase velocities on column performance were investigated. The axial dispersion model was used to obtain the overall mass transfer coefficient. The previous models for overall mass transfer coefficient were reviewed and compared with experimental data. A new correlation was derived for prediction of the overall mass transfer coefficients. The presented model was compared with the experimental results and a good agreement between them was obtained.The mass transfer experiments revealed the feasibility of operating the separation of samarium and gadolinium in the pulsed disc and doughnut columns.

Keywords

Main Subjects


 [1] Gupta C.K., Krishnamurthy N., “Extractive Metallurgy of Rare-Earths”, CRC Press, New York (2005).
[2] Zhu Zh., Pranolo Y., Cheng C. Y., Separation of Uranium and Thorium from Rare Earths for Rare Earth Production-A Review, Miner. Eng., 77: 185-196 (2015).
[3] Quinn J. E., Soldenhoff K.H., Stevens G.W., Lengkeek N.A., Solvent Extraction of Rare Earth Elements Using Phosphonic/Phosphinic Acid Mixtures, Hydrometallurgy, 157: 298-305 (2015)
[4] Kumaria A., Pandaa R., Kumar Jhaa M., Kumarb J.R.,  Leeb J.Y., Process Development to Recover Rare Earth Metals from Monazite Mineral: A Review, Miner. Eng., 79: 102-115 (2015).
[5] Kislik V. S., “Solvent Extraction: Classical and Novel Approaches” Elsevier, New York (2012).
[6] Javanshir S., Abdollahy M., Abolghasemi H., Khodadadi Darban A., The Effect of Kinetics Parameters on Gold Extraction by Lewis Cell:  Comparison Between Synthetic and Leach Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 59-67 (2012).
[7] Jafari S., Yaftian M. R., Parinejad M., A Study on the Extraction of Cd(II), Co(II) and Ni(II) Ions  by Bis(2-ethylhexyl)phosphoric Acid and  2-Thenoyltrifluoroacetone, Iran. J. Chem. Chem. Eng. (IJCCE), 30(3): 89-96 (2011).
[8] Nadimi, H., Haghshenas Fatmehsari D., Firoozi S., Extraction of Ni and Co via D2EHPA in the Presence of Acetate Ion, Iran. J. Chem. Chem. Eng. (IJCCE), 34(4): 61-67 (2015).
[9] Parmentier D., Paradis S., Metzb S.J., Wiedmer S.K., Kroon M.C., Continuous Process for Selective Metal Extraction with an Ionic Liquid, Chem. Eng. Res. Des., 109: 553-560 (2015)
[11] Thornton J. D., “Science and Practice of Liquid- Liquid Extraction”, Oxford University Press, Oxford (1992).
[12] Wang Y., Smith K. H., Mumford K., Grabin T.F., Li Z., Steven G., Prediction of Dispersed Phase Holdup in Pulsed Disc and Doughnut Solvent Extraction Columns under Different Mass Transfer Conditions, Chinese J. Chem. Eng., 24(2): 226-231 (2016).
[13] Wang Y., Smith K. H., Mumford K., Yi H., Wang L., Stevens G., Prediction of Drop Size in a Pulsed and Non-Pulsed Disc and Doughnut Solvent Extraction Column, Chinese J. Chem. Eng., 109: 667-674 (2016).
[14] Benedetto J.S., Ciminelli V.S.T., Neto J.D., Comparison of Extractants in the Separation of Samarium and Gadolinium, Miner. Eng., 6(6): 597-605 (1993).
[15] Takahashi K., Abdel-Tawab A. A. S., Nii S., Yajima T., Kawaizumi F., Extraction of Rare Earth Metals with a Multistage Mixer-Settler Extraction Column, Chem. Eng. Sci., 57(3): 469-478 (2002).
[16] Abdeltawab A. A., Nii S., Kawaizumi F., Takahashi K., Separation of La and Ce with PC-88A by Counter-Current Mixer-Settler Extraction Column, Sep. Purif. Technol., 26 (2-3): 265–272 (2002).
[17] Singh D. K., Kotekar M. K., Singh H., Development of a Solvent Extraction Process for Production of Nuclear Grade Dysprosium Oxide from a Crude Concentrate, Desalination, 232(1-3): 49-58 (2008).
[18] Liao B.Q., Wang J., Wan C. R., Separation, and Recovery of Rare Earths in Reciprocating Extraction Columns, Sep. Sci. Technol., 40(8): 1685-1700 (2005).
[19] Movsowitz R. L., Kleinberger R., Buchalter, E. M., Grinbaum, B., Comparison of the Performance of Full Scale Pulsed Columns vs. Mixer-Settlers for Uranium Solvent Extraction, Bateman Projects Ltd., Israel. Uranium 2000: “International Symposium on the Process Metallurgy of Uranium” (1997).
[20] Jahya A., Stevens G. W., Pratt H. R. C., Pulsed Disc-and-Doughnut Column Performance, Solvent. Extr. Ion. Exc., 27(1): 63-82 (2009).
[21] Gröber H., Die Erwärmung und Abkühlung Einfacher Geometrischer Körper, Z. Var. Dtsch. Ing., 69: 705-711 (1925).
[22] Kronig R., Brink J. C., On the Theory of Extraction from Falling Droplets, Appl. Sci. Res., 2(1): 142–154 (1950).
[23] Handlos A. E., Baron T., Mass and Heat Transfer from Drops in Liquid–Liquid Extraction, AIChE J., 3(1): 127-136 (1957).
[24] Johnson A. I., Hamielec A. E., Mass Transfer Inside Drops, AIChE J., 6(1): 145-149 (1960).
[25] Calderbank P. H., Korchinski I. J. O., Circulation in Liquid drops: a Heat Transfer Study, Chem. Eng. Sci., 6(2): 65-78 (1956).
[26] Skelland A. H. P., Wellek R. M., Resistance to Mass Transfer Inside DropletsAIChE J., 10(4): 491-496 (1964).
[27] Lochiel A. C., Calderbank P. H., Mass Transfer in the Continuous Phase Around Axisymmetric Bodies of Revolution, Chem. Eng. Sci., 19(7): 471-484 (1964).
[28] Boyadzhiev L., Elenkov D., Kyuchukov G., On Liquid-Liquid Mass Transfer Inside Drops in a Turbulent Flow Field, Can. J. Chem. Eng., 47(1): 42-44 (1969).
[29] Steiner L., Mass-Transfer Rates from Single Drops and Drop Swarms, Chem. Eng. Sci., 41(8): 1979-1986 ( 1986).
[30] Temos J., Pratt H. R. C., Stevens G. W., “Comparison of Tracer and Bulk Mass Transfer Coefficients for Droplets, in Proceedings of the International Solvent Extraction Conference ISEC ‘93”, pp. 1770–1777 Elsevier, Amsterdam (1993).
[32] Bahmanyar H., Nazari L., Sadr A., Prediction of Effective Diffusivity and Using of it in Designing Pulsed Seve Extraction Columns, Chem. Eng. Process,  47(1): 57-65 (2008).
[33] Torab-Mostaedi M., Safdari J., Prediction of Mass Transfer Coefficients in a Pulsed Packed Extraction Column Using Effective Diffusivity, Braz. J. Chem. Eng., 26(4): 685-694 (2009).
[34] Amanabadi M., Bahmanyar H., Zarkeshan Z., Moosavian M. A., Prediction of Effective Diffusion Coefficient in Rotating Disc Columns and Application in Design, Chin. J. Chem. Eng., 17: 366-372 (2009).
[35] Torab-Mostaedi M., Safdari J., Ghaemi A., Mass Transfer Coefficients in Pulsed Perforated-Plate Extraction Columns, Braz. J. Chem. Eng., 27(2): 243-251 (2010).
[36] Torab-Mostaedi M., Ghaemi A., Asadollahzadeh M., Prediction of Mass Transfer Coefficients in Pulsed Disc and Doughnut Extraction Column, Can. J. Chem. Eng., 90(6): 1569-1577 (2012).
[37] Torkaman R., Moosavian M.A., Torab-Mostaedi M., Safdari J., Solvent Extraction of Samarium from Aqueous Nitrate Solution by Cyanex301 and D2EHPA, Hydrometallurgy, 137: 101-107 (2013a).
[38] Torkaman R., Moosavian M.A., Safdari J., Torab-Mostaedi M., Synergistic Extraction of Gadolinium from Nitrate Media by Mixtures of Bis (2,4,4-Trimethylpentyl) Dithiophosphinic Acid and di-(2-Ethylhexyl) Phosphoric Acid, Ann. Nucl. Energy, 62: 284-290 (2013b).
[39] Torkaman R., Safdari J., Torab-Mostaedi M., Moosavian M.A., Asadollahzadeh M., Extraction of Samarium and Gadolinium from Aqueous Nitrate Solution with D2EHPA in a Pulsed Disc and Doughnut Column, J. Taiwan. Inst. Chem. Eng., 48: 18-25 (2015).
[40] Wilke C. R., Chang P., Correlation of Diffusion Coefficients in Dilute Solutions, AIChE J., 1(2): 264-270, (1955).
[41] Geist A., Nitsch W., Kim J. I., On the Kinetics of Rare-Earth Extraction Into D2EHPA, Chem. Eng. Sci., 54 (12): 1903-1907 (1999).
[42] Yue-yun W., Shan J., Giu-lin W., Wei W., Axial Mixing and Mass Transfer Characteristics of Pulsed Extraction Column with Discs and Doughnuts, Trans. Nonferrous Met. Soc. China, 16(1): 178-184 (2006).