Influence of Fabrication Parameters on Thermo-Mechanical Characteristics of Zea Natural Fiber Reinforced Polymer Composites

Document Type : Research Article

Authors

Department of Production Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, INDIA

Abstract

Researchers have made remarkable achievements in natural fiber-reinforced polymer composite materials based on their superior properties over other materials for usage in engineering fields over the last four decades. Agricultural-based residues are primarily available in various countries; Nowadays, these residues are used to reinforce fiber material for preparing composites. Zea is one of the agricultural residues-based fibers. The present effort investigates the thermal property, hardness, water absorption property, and dynamic behavior of the composite material in the form of plates comprising polyester matrix reinforced with zea fibers. These properties are characterized by the composite plate possessing superior mechanical strength. The reinforcements are randomly oriented in the polyester matrix which is manufactured by compression molding technique. The experimental results showed that the composite plate exhibited superior mechanical and thermal properties. 

Keywords

Main Subjects


[1] Meddahi A., Ait Tahar K., Bibi M., Studies of Sisal Fiber-Containing Composites, J. Nat. Fibers, 5: 36-46 (2008).
[2] Satyanarayana K.G., Sukumaran K., Mukherjee P.S., Pavithran C., Pillai S.G.K., Natural Fibre-Polymer Composites, Cem. Con. Compos, 12: 117-136 (1990). 
[3] Paramasivam T., Abdul Kalam APJ., On the Study of Indigenous Natural-Fibre Composites, Fibre Sci. Technol., 7: 85-88 (1974).
[4] Sanadi A.R., Caulfield D.F., Jacobson R.E., Rowell R.M., Renewable Agricultural Fibers as Reinforcing Fillers in Plastics: Mechanical Properties of Kenaf Fiber-Polypropylene Composites, J. Ind. Eng. Chem., 34: 1889-1896 (1995).
[5] Chand N., Fahim M. "Tribology of Natural Fiber Polymer Composites", Elsevier, Woodhead Publishing (2020).
[6] Gunturu B., Vemulapalli C., Malkapuram R., Konduru N., Investigation on Mechanical, Thermal and Water Absorption Properties of Banana/Coir Reinforced Polypropylene Hybrid Composites, Revue des Composites et des Matériaux Avancés-J. Compos. Adv. Mat., 30: 123-131 (2020).
[8] Karthik Babu N., Muthukumaran S., Ramesh T., Arokiasamy S., Effect of Agro-Waste Microcoir Pith and Nano-Alumina Reinforcement on Thermal Degradation and Dynamic Mechanical Behavior of Polyester Composites, J. Nat. Fibers, 18: 581-593 (2021). 
[9] Ismail H., Hong H., Ping C., Khalil H.A., Polypropylene/Silica/Rice Husk Ash Hybrid Composites: A Study on the Mechanical, Water Absorption and Morphological Properties, J. Therm. Compos. Mat., 16: 121-137 (2003).
[10] Shamsipur M., Bahrami Adeh N., Hajitarverdi M.S., Yazdimamaghani M., Zarei F., Influence of Micro and Nano Silica on Mechanical Properties of Plasticized Sulfur Composites, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 1-7 (2013). 
[11] Nurazzi N., Asyraf M., Fatimah Athiyah S., Shazleen S., Rafiqah S., Harussani M., Kamarudin S., Razman M., , Rahmah M. Zainudin E., A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications, Polymers, 13: 2170 (2021). 
[12] Ndazi B., Tesha J., Bisanda E.T., Some Opportunities and Challenges of Producing Bio-Composites From Non-Wood Residues, J. Mater. Sci., 41: 6984-6990 (2006). 
[13] Kailainathan S., Muralikannan R., Nijandhan K., Venkatachalam S., High-Strength Hybrid Particulate-Fibre Polymer Composites: The Role of Process Temperature on the Mechanical Strength, Mater. Res. Express, 6: 125313 (2019).
[14] Çöpür Y., Güler C., Akgül M., Taşçıoğlu C., Some Chemical Properties of Hazelnut Husk and Its Suitability for Particleboard Production, Build. Environ., 42: 2568-2572 (2007). 
[15] Sain M., Panthapulakkal S., Bioprocess Preparation of Wheat Straw Fibers and Their Characterization, Ind. Crops.Prod., 23: 1-8 (2006).
[16] Panthapulakkal S., Sain M., Injection Molded Wheat Straw and Corn Stem Filled Polypropylene Composites, J. Poly. Environ., 14: 265-272 (2006). 
[17] Kumar R., Sivaganesan S., Senthamaraikannan P., Saravanakumar S., Khan A., Ajith Arul Daniel S., Loganathan L., Characterization of New Cellulosic Fiber from the Bark of Acacia nilotica L. Plant, J. Nat. Fibers.,  19: 199-208 (2022).
[18] Khan A., Vijay R., Singaravelu D.L., Sanjay M., Siengchin S., Verpoort F., Alamry K.A., Asiri A.M., Extraction and Characterization of Natural Fiber from Eleusine Indica Grass as Reinforcement of Sustainable Fiber Reinforced Polymer Composites,
J. Nat. Fibers.
, 18: 1742-1750 (2021). 
[19] Vijay R., James Dhilip J.D., Gowtham S., Harikrishnan S., Chandru B., Amarnath M., Khan A., Characterization of Natural Cellulose Fiber from the Barks of Vachellia Farnesiana, J. Nat. Fibers., 19(4): 1-10 (2020).
[20] Premalatha N., Saravanakumar S., Sanjay M., Siengchin S., Khan A., Structural and Thermal Properties of Chemically Modified Luffa Cylindrica Fibers, J. Nat. Fibers., 18: 1038-1044 (2021). 
[21] Ashori A., Nourbakhsh A., Bio-Based Composites from Waste Agricultural Residues, Waste Manage., 30: 680-684 (2010).
[22] Nourbakhsh A., Ashori A., Wood Plastic Composites From Agro-Waste Materials: Analysis of Mechanical Properties, Bioresour.  Technol., 101: 2525-2528 (2010). 
[23] Xie Y., Hill C.A., Xiao Z., Militz H., Mai C., Manufacturing. Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review, Compos. Part A: Appl. Sci. Manu., 41: 806-819 (2010).
[24] Balaji N., Jayabal S., Artificial Neural Network Modeling of Mechanical Behaviors of Zea Fiber–Polyester Composites, P.I. Mech. Eng. E: J. Pro. Mech. Eng., 230: 45-55 (2016).
[25] Balaji N., Jayabal S., Sundaram S.K., A Neural Network Based Prediction Modeling for Machinability Characteristics of Zea Fiber-Polyester Composites, Trans. Indian Inst. Met., 69: 881-889 (2016).
[26] Balaji N., Chockalingam S., Ashokraj S., Simson D., Jayabal S., Study of Mechanical and Thermal Behaviours of Zea-Coir Hybrid Polyester Composites, Mater. Today: Proc., 27(3): 2048-2051 (2020). 
[27] Sanjay M., Madhu P., Jawaid M., Senthamaraikannan P., Senthil S. Pradeep S., Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review, J. Clean. Prod., 172: 566-581 (2018).
[28] Wielage B., Lampke T., Marx G., Nestler K., Starke D., Thermogravimetric and Differential Scanning Calorimetric Analysis of Natural Fibres And Polypropylene, Thermochim. Acta., 337: 169-177 (1999). 
[31] Wollerdorfer M., Bader H., Influence of Natural Fibres on the Mechanical Properties of Biodegradable Polymers, Ind. Crops Prod., 8(2): 105-112 (1998).
[32] Joseph P., Rabello M.S., Mattoso L., Joseph K., Thomas S., Environmental Effects on the Degradation Behaviour of Sisal Fibre Reinforced Polypropylene Composites, Compos.Sci. Technol., 62(10): 1357-1372 (2002).
[33] Youssef A.M., El-Gendy A., Kamel S., Evaluation of Corn Husk Fibers Reinforced Recycled Low Density Polyethylene Composites, Mater. Chem. Phys., 152: 26-33 (2015). 
[35] Sari N.H., Fajrin J., Fudholi A., Characterisation of Swellability and Compressive and Impact Strength Properties of Corn Husk Fibre Composites, Compos.Commun., 18: 49-54 (2020). 
[36] Kaymakci A., Ayrilmis N., Investigation of Correlation between Brinell Hardness and Tensile Strength of Wood Plastic Composites, Compos. B.  Eng., 58: 582-585 (2014). 
[38] Saha A., Das S., Bhatta D., Mitra B., Study of Jute Fiber Reinforced Polyester Composites by Dynamic Mechanical Analysis, J. Appl. Polym. Sci., 71: 1505-1513 (1999). 
[39] Ibrahim M., Sapuan S., Zainudin E., Zuhri M., Preparation and Characterization of Cornhusk/Sugar Palm Fiber Reinforced Cornstarch-Based Hybrid Composites, J. Mater. Res. Technol., 9: 200-211 (2020).
[41] Saheb D.N., Jog J.P., Natural Fiber Polymer Composites: A Review, Adv. Polym. Technol., 18: 351-363 (1999). 
[42] Usmani M.,Khan I.,Haque A.,Bhat A.,Mondal D. Gazal U., Biomass-Based Composites from Different Sources: Properties, Characterization, and Transforming Biomass with Ionic Liquids, “Lignocellulosic Fibre and Biomass-Based Composite Materials”, Elsevier, Woodhead publishing (2017).
[43] Sindhu R., Binod P., Pandey A., Microbial Poly-3-Hydroxybutyrate and Related Copolymers, “Industrial Biorefineries & White Biotechnology”, Elsevier, (2015).
[44] da Luz F.S., Candido V.S., Da Silva A.C.R., Monteiro S.N., Thermal behavior of polyester Composites Reinforced with Green Sugarcane Bagasse Fiber, JOM, 70: 1965-1971 (2018). 
[45] Spinace M.A., Lambert C.S., Fermoselli K.K., De Paoli M.-A., Characterization of Lignocellulosic Curaua Fibres, Carbohydr. Polym., 77(1): 47-53 (2009). 
[46] Ganan P., Mondragon I., Fique Fiber-Reinforced Polyester Composites: Effects of Fiber Surface Treatments on Mechanical Behavior, J. Mat. Sci., 39: 3121-3128 (2004). 
[48] Prithivirajan R., Jayabal S., Sundaram S.K., Sangeetha V., Hybrid Biocomposites from Agricultural Residues: Mechanical, Water Absorption and Tribological Behaviors, J. Polym. Eng., 36: 663-671 (2016).
[49] Marcovich N.E., Reboredo M.M., Aranguren M., Mechanical Properties of Woodflour Unsaturated Polyester Composites, J. Appl.  Polym. Sci., 70: 2121-2131 (1998). 
[50] Mwaikambo L.Y., Bisanda E.T., The Performance of Cotton–Kapok Fabric–Polyester Composites, Polym. Test., 18(3): 181-198 (1999). 
[51] Etaati A., Pather S., Fang Z., Wang H., The study of Fibre/Matrix Bond Strength in Short Hemp Polypropylene Composites from Dynamic Mechanical Analysis, Compos. B. Eng., 62: 19-28 (2014).