Hydrodynamic Study of a Rising Bubble in the Presence of Cetyltrimethylammonium Bromide Surfactant

Document Type : Research Article

Authors

Karimi, Safoora*+; Abiri, Ana; Shfiee, Mojtaba Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, I.R. IRAN

Abstract

The performance of surfactants especially in two-phase systems, depends on their type, Hydrophile-Lipophile Balance (HLB) number, concentration, and whether the surfactant is ionic or non-ionic. The current work was conducted to study the effect of the presence of Cetyltrimethylammonium Bromide (CTAB), a cationic surfactant, in air-water systems. Thus, the behavior of a single air bubble rising in aqueous CTAB solutions was studied experimentally. The independent test variables are solution concentration (0.4-1.6mM) and bubble diameter (3.5-4.6mm). The effect of these variables on rising velocity, bubble shape, and drag coefficient has been studied. Due to the importance of the drag coefficient in two-phase fluid, the effect of Reynolds number, Eötvös number, and aspect ratio on it has also been evaluated. Experiments have been performed at high Reynolds numbers (850<Re<1000), which are obtained by increasing the surfactant concentration. The results showed that the selected ionic surfactant had a more tangible effect on bubble behavior than nonionic surfactants. Moreover, there is no noticeable difference in the behavior of the bubble rising at concentrations above and below of Critical Micelle Concentration (CMC) of CTAB, which can be attributed to its high aggregation number compared to other surfactants.

Keywords

Main Subjects


[2] Sun W., Zhu C., Fu T., Ma Y., Deformation and Aspect Ratio of Bubbles Continuously Rising in Shear-Thinning Fluids, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 667-681 (2021).
[4] Karimi S., Shafiee M., Ghadam F., Abiri A., Abbasi H., The Drag Coefficient Prediction of a Rising Bubble through a non-Newtonian Fluid,  Am. J. Mech. Eng. (In Persian), 52(4):  (2019).
[5] Kherbeche A., Mei M., Thoraval M-J., Hébrard G., Dietrich N., Hydrodynamics and Gas-Liquid Mass Transfer Around a Confined Sliding Bubble, Chem. Eng. J., 386: 121461 (2020).
[7] Guo R., Fu T., Zhu C., Yin Y., Ma Y., Hydrodynamics and Mass Transfer of Gas-Liquid Flow in a Tree-Shaped Parallel Microchannel with T-type Bifurcations,  Chem. Eng. J., 373: 1203-1211 (2019).
[8] Prakash R., Majumder S.K., Singh A., Particle-Laden Bubble Size and its Distribution in Microstructured Bubbling Bed in the Presence and Absence of a Surface Active Agent,  Ind. Eng. Chem. Res, 58(8): 3499-3522 (2019).
[9] Ahmed Z., Izbassarov D., Costa P., Muradoglu M., Tammisola O., Turbulent Bubbly Channel Flows: Effects of Soluble Surfactant and Viscoelasticity,  Comput. Fluids, 212: 104-717 (2020).
[10] Karimi S., Shafiee M., Ghadam F., Abiri A., Abbasi H., Experimental Study on Drag Coefficient of a Rising Bubble in the Presence of Rhamnolipid as a Biosurfactant, J. Disper Sci. Technol., 42(6): 1-11 (2020).
[11] Takahashi T., Miyahara T., Izawa H., Drag coefficient and wake volume of single bubbles rising through quiescent liquid,  Kagaku Kogaku Ronbun, 2: 480-487 (1976).
[12] Mazahernasab R., Ahmadi R., Ravanasa E., Direct Bubble Size Measurement in a Mechanical Flotation Cell by Image Analysis and Laser Diffraction Technique-A Comparative Study,  Iran. J. Chem. Chem. Eng. (IJCCE), 40(5): 1653-1664 (2021).
[13] Wang H., Yang W., Yan X., Wang L., Wang Y., Zhang H., Regulation of Bubble Size in Flotation: A Review,  J Environ Chem Eng, 8(5): 104070 (2020).
[14] Wenyuan F., Youguang M., Xiaolei L., Huaizhi L., Study on the Flow Field Around Two Parallel Moving Bubbles and Interaction Between Bubbles Rising in CMC Solutions by PIV,  Chin. J. Chem. Eng, 17(6): 904-913 (2009).
[15] Tzounakos A., Karamanev D.G., Margaritis A., Bergougnou M.A., Effect of the Surfactant Concentration on the Rise of Gas Bubbles in Power-law Non-Newtonian Liquids,  Ind. Eng. Chem. Res., 43(18): 5790-5795 (2004).
[16] Vecer M., Lestinsky P., Wichterle K., Ruzicka M., On Bubble Rising in Countercurrent Flow, Int. J. Chem. React. Eng., 10(1):  (2012).
[17] Karimi S., Abiri A., Shafiee M., Mohamadzadeh N., Experimental Study on a Rising Oil Droplet through a Water-Oil Interface, Journal of Mechanical Engineering(In Persian), 51(4): 361-368 (2022).
[18] Clift R., Grace J.R., Weber M.E., "Bubbles, Drops, and Particles". ed.: Courier Corporation (2005).
[20] Li X., Bai H., Yang Y., Yoon J., Wang S., Zhang X., Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance,  Adv. Mater., 31(5): 1805092 (2019).
[21] Gurses A., Yalcin M., Sozbilir M., Dogar C., The Investigation of Adsorption Thermodynamics and Mechanism of a Cationic Surfactant, CTAB, onto Powdered Active Carbon,  Fuel Process Technol, 81(1): 57-66 (2003).
[22] Ciszewski R.K., Gordon B.P., Muller B.N., Richmond G.L., Takes Two to Tango: Choreography of the Coadsorption of CTAB and Hexanol at the Oil–Water Interface,  J. Phys. Chem. B, 123(40): 8519-8531 (2019).
[23] Anachkov S.E., Danov K.D., Basheva E.S., Kralchevsky P.A., Ananthapadmanabhan K.P., Determination of the Aggregation Number and Charge of Ionic Surfactant Micelles from the Stepwise Thinning of Foam Films,  Adv. Colloid. Interface, 183: 55-67 (2012).
[24] Montazer M., Rangchi F., Simultaneous Antimicrobial, Water and Blood Repellent Finishing of Disposal Nonwovens Using CTAB and Fluorochemical,  Textile. and Apparel., 19(2): 128-132 (2009).
[26] Pawliszak P., Zawala J., Ulaganathan V., Ferri J.K., Beattie D.A., Krasowska M., Interfacial Characterisation for Flotation: 2. Air-Water Interface,  Curr Opin Colloid Interface Sci, 37: 115-127 (2018).
[27] Wang Z., Chen J., Feng X., Mao Z-S., Yang C., Visual Dynamical Measurement of the Solute-Induced Marangoni Effect of a Growing Drop with a PLIF Method,  Chem  Eng Sci, 233: 116-401 (2021).
[28] McHale G., Shirtcliffe N., Evans C., Newton M., Terminal Velocity and Drag Reduction Measurements on Superhydrophobic Spheres,  Appl Phys Lett, 94(6): 64-104 (2009).
[29] Ziqi C., Yuyun B., Zhengming G., Hydrodynamic Behavior of a Single Bubble Rising in Viscous Liquids,  Chin J. Chem. Eng., 18(6): 923-930 (2010).
[30] Colombet D., Legendre D., Cockx A., Guiraud P., Mass or Heat Transfer Inside a Spherical Gas Bubble at Low to Moderate Reynolds Number,  Int. J. Heat. Mass. Transf., 67: 1096-1105 (2013).
[32] Pigeonneau F., Perrodin M., Climent E., Mass‐transfer Enhancement By a Reversible Chemical Reaction Across the Interface of a Bubble Rising Under Stokes Flow, Alche. J., 60(9): 3376-3388 (2014).
[33] Harper J., Surface Activity and Bubble Motion,  Appl. Sci. Res., 38 (1): 343-352 (1982).
[34] Fan L, Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Chem. Eng. Technol., (1991).
[35] Rafiei Mehrabadi A A, "Effects of Frother Type on Single Bubble Rise Velocity",  McGill University (MSc thesis):  (2009).
[36]Li Y., Yang L., Zhu T., Yang J., Ruan X., Biosurfactants as Alternatives to Chemosynthetic Surfactants in Controlling Bubble Behavior in the Flotation Process,  J. Surfactants Deterg., 16(3): 409-419 (2013).
[37] Wang H., Yang J., Lei S., Wang X., Comparing the Effect of Biosurfactant and Chemical Surfactant on Bubble Hydrodynamics in a Flotation Column,  Water Sci. Technol., 68(4): 783-790 (2013).
[38] Rodrigue D., Blanchet J.-F., Surface Remobilization of Gas Bubbles in Polymer Solutions Containing Surfactants,  J. Colloid. Interf. Sci., 256(2): 249-255 (2002).
[39] Yao N., Wang Y., Liu J., Sun X., Hao Z., Liu Y., Chen S., Wang G., Bubble Rise Characteristics in Oscillating Grid Turbulence,  Miner. Eng., 164: 106832 (2021).
[40] Yan X., Zheng K., Jia Y., Miao Z., Wang L., Cao Y., Liu J., Drag Coefficient Prediction of a Single Bubble Rising in Liquids,  Ind. Eng. Chem. Res., 57(15): 5385-5393 (2018).
[43] Zhang C., Zhou D., Sa R., Wu Q., Investigation of Single Bubble Rising Velocity in LBE by Transparent Liquids Similarity Experiments, Prog. Nucl. Energ., 108: 204-213 (2018).
[44] Kurimoto R., Hayashi K., Tomiyama A., Terminal Velocities of Clean and Fully-Contaminated Drops in Vertical Pipes, Int. J. Multiphas. Flow., 49: 8-23 (2013).
[45] Sun B., Guo Y., Wang Z., Yang X., Gong P., Wang J., Wang N., Experimental Study on the Drag Coefficient of Single Bubbles Rising in Static Non-Newtonian Fluids in Wellbore,  J. Nat. Gas. Sci. Eng., 26: 867-872 (2015).
[46] Deng C., Huang W., Wang H., Cheng S., He X., Xu B., Preparation of Micron-Sized Droplets and their Hydrodynamic Behavior in Quiescent Water,  Braz. J. Chem. Eng., 35(2): 709-720 (2018).