Structural and Optical Properties of Sn Doped Zinc Oxide (ZnO:Sn) Thin Films Prepared by Spray Pyrolysis Method

Document Type : Research Article

Authors

1 Department of Chemistry, Asian College of Engineering and Technology, Coimbatore-641110, Tamil Nadu, INDIA

2 Department of Physics, Periyar Maniammai Institute of Science and Technology, Thanjavur-620024, Tamil Nadu, INDIA

3 Division of Phytochemistry, Shanmuga Centre for Medicinal Plants Research, Thanjavur-613007, Tamil Nadu, INDIA

Abstract

Sn-doped zinc oxide (ZnO:Sn) thin films were deposited onto the ultrasonically cleaned pre-heated glass substrates by employing a simplified spray pyrolysis technique using a spray gun at a constant temperature 250oC. The films were deposited on the substrate for various solution volumes by taking 0.05M of Zinc acetate as precursor concentration along with 0.0001M & 0.0003M Stannic chloride. The thickness of the films was calculated by the gravimetric weight difference method. The effects of Sn concentration on the structural and optical properties of films were investigated. The deposited films of Sn-doped ZnO showed that the films are c-axis oriented with hexagonal wurtzite structure and preserve their (002) preferential orientation. The grain sizes decreased depending on the increasing Sn concentration. From the optical spectra, all the film exhibits a better transparency of about 80% to 90% in the visible region along with a sharp absorption edge observed which is suitable for optoelectronic applications. The optical band gap slightly increases with increasing Sn doping concentration.  The electrical properties of the films show that the resistivity of the film decreases with the increase of Sn concentration with ZnO. The results suggest the potential application of Sn-doped ZnO thin film as a transparent conducting oxide layer for different optoelectronic and photovoltaic devices.

Keywords

Main Subjects


[1] Chahmat N., Haddad A., Ain-Souya A., Ganfoudi R., Attaf N., Ghers M., Effect of Sn Doping on the Properties of ZnO Thin Films Prepared by Spray Pyrolysis, J. Mod. Phy., 3(11):1781-1785 (2012).
[2] Fridjine S., Touihri S., Boubaker K., Amlouk M., Belgacem S., Structural and Optical Properties of (ZnO)x (ZnSe)y Thin Films for Optoelectronic Applications, Phys. Status Solidi C., 7(9): 2282–2285 (2010).
[3] Chahmat N., Souier T., Mokri A., Bououdina M., Aida M.S., Ghers M., Structure, Microstructure and Optical Properties of Sn-Doped ZnO Thin Films,
J. Alloys Compd., 593:148-153(2014).
[4] Rajasekaran M., Arunachalam A., Kumaresan P., Structural, Morphological and Optical Characterization of Ti Doped ZnO Nanorod Thin Film Synthesized by Spray Pyrolysis Technique, Mat. Res. Express., 7(3):036412 (2020).
[5] Borysiewicz M.A., ZnO as a Functional Material, A Review, Crystals, 9(10): 505 (2019).
[6] Look D.C., Coskum C., Claflim B., Farlow G.C., Electrical and Optical Properties of Defects and Impurities in Zno, Proceedings of the 22nd International Conference on Defects in Semiconductors, Physica B: Condensed Mater., 340-342:32-38 (2003).
[7] Lucio-Lópeza M.A., Luna-Arias M.A., Maldonado A., Olvera M. de la L., Acosta D. R., Preparation of Conducting and Transparent Indium-Doped ZnO Thin Films by Chemical Spray, Sol. Energy Mat. Sol. Cells., 90(6): 33-741(2006).
        doi:10.1016/j.solmat.2005.04.010
[8] Ajili M., Castagné M., Turki N.K.,  Study on the Doping Effect of Sn-doped ZnO Thin Films, Superlattices Microstruct., 53:213-222 (2013).
[9] Zak A.K., Majid W.A., Abrishami M., Yousefi R., X-Ray Analysis of ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot Methodsm Solid State Sci., 13(1): 251–256 (2011).
[10] Fu D.-W., Zhang W., Cai H.-L., Ge J.-Z., Zhang Y.,  Xiong R.-G., Diisopropylammonium Chloride: A Ferroelectric Organic Salt with a High Phase Transition Temperature and Practical Utilization Level of Spontaneous Polarization, Adv. Mater., 23(47): 5658–5662 (2011).
        doi: 10.1002/adma.201102938.
[11] Alsaad A.M., Ahmad A.A., Al-Bataineh Q.M., Bani-Salameh A.A., Abdullah H.S., Qattan I.A., Albataineh Z.M., Telfah A.D., Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films, Materials, 13(7): 1737 (2020).
[12] Deng R., Zhang X.T., Effect of Sn Concentration on Structural and Optical Properties of Zinc Oxide Nanobelts, J. Lumin., 128(9): 1442-1446(2008).
        DOI: 10.1016/j.jlumin.2008.01.014
[13] Aleksandrova M, Ivanova T, Strijkova V, Tsanev T, Singh AK, Singh J, Gesheva K. Ga-Doped ZnO Coating—A Suitable Tool for Tuning the Electrode Properties in the Solar Cells with CdS/ZnS Core-Shell Quantum Dots, Crystals, 11(2):137(2021).
[14] Muchuweni T.S.,  Sathiaraj H., Nyakotyo, Synthesis and Characterization of Zinc Oxide Thin Films for Optoelectronic Applications, Heliyon, 3(4): e00285 (2017).
         https://doi.org/10.1016/j.heliyon.2017.e00285.
[15] Tauc J., Grigorovici R.,  Vancu A., Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Stat. Sol., 15: 627-637 (1966).
[16] Zhang Y., Xu X., Machine Learning Optical Band Gaps of Doped-ZnO Films, Optik, 217: 164808 (2020).
[17] Galdámez-Martinez A., Santana G., Güell F., Martínez-Alanis P.R., Dutt A., Photoluminescence of ZnO Nanowires: A Review. Nanomaterials (Basel), 10(5): 857 (2020).
        doi: 10.3390/nano10050857. 
[18] Adamopoulos G., Thomas S., Wöbkenberg P.H., Bradley D.D., McLachlan M.A., Anthopoulos T.D., High-Mobility Low-Voltage ZnO and Li-doped ZnO Transistors Based on ZrO₂ High-K Dielectric Grown By Spray Pyrolysis In Ambient Air, Adv. Mater., 23(16):1894-1898 (2013).
        DOI: 10.1002/adma.201003935.
[20] Abdulrazzaq O.A., Saini V., Bourdo, S., Dervishi E., Biris A.S., Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement, Part. Sci. Technol., 31(5): 427–442 (2013).
[21] Miyake Y., Saeki A., Machine Learning-Assisted Development of Organic Solar Cell Materials: Issues, Analyses, and Outlooks, J. Phy. Chem. Lett., 12(51):12391-12401(2021).
        DOI: 10.1021/acs.jpclett.1c03526
[22] Mahmood A., Wang J-L., Machine Learning for High Performance Organic Solar Cells: Current Scenario and Future Prospects, Energy Environ. Sci., 14(1): 90-105 (2021).
[23] Meftahi N., Klymenko M., Christofferson A.J., et al., Machine Learning Property Prediction for Organic Photovoltaic Devices, npj Comput. Mater., 6:166 (2020).
        https://doi.org/10.1038/s41524-020-00429-w