Removing Organic Dye by Cellulose Acetate Nanocomposite Membrane Ultrafiltration: Effect of Bio-Nanoparticle Size

Document Type : Research Article

Authors

1 National Agronomy Institute of Tunis, 43 Avenue Charles Nicolle, 1082 Tunis, TUNISIA

2 Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha'il 81441, SAUDI ARABIA

3 Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, TUNISIA

4 Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, UNITED ARAB EMIRATES

5 Chemical Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, ALGERIA

6 Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam, Chennai-603 103, INDIA

7 Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, SAUDI ARABIA

Abstract

This work reported a new perspective on improving the green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) from Aloe vera plant leaf extract and their incorporation into membranes for several applications. The X-ray diffraction of the powder depicted that the size of the samples TiO2 NPs (1 h) and TiO2 NPs (5 h) were 83 ± 15 (Ø2) nm and 23 ± 1.6 nm (Ø1), respectively. With two sizes of TiO2 NPs as an additive, cellulose acetate (CA) membranes and a series of TiO2/CA hybrid membranes were prepared using a phase-inversion method. The membrane characterization was carried out by Fourier transform-infrared spectroscopy, scanning electron microscope (SEM), water content, contact angle, porosity, and pure water flux measurements. The cross-section SEM images indicated that the size of macro-voids was reduced and the width of the membrane pores was slightly increased by the addition of TiO2 (Ø1). Membrane performance has been investigated in terms of dye Remazol Brilliant Red F3B (Reactive Red 180, RR 180) removal, which could be, however, affected by the competitive effect of another chemical species present in the solution such as NaCl salt. Indeed, NaCl decreased the retention rate of dye due to electrostatic interactions, as the chloride ions compete with the anionic dye molecules during the complexation process. The retention rate decreased at alkaline pH due to interaction forces between the membrane surface and anions of the RR 180.

Keywords

Main Subjects


[3] Mahmood A., & Khan S.U., Theoretical Designing of Novel Heterocyclic Azo Dyes for Dye Sensitized Solar Cells, J. Comput. Electron., 13: 1033-1041 (2014).
[4] Samhaber W.M., Nguyen M.T., Applicability and Costs of Nanofiltration in Combination with Photocatalysis for the Treatment of Dye House Effluents, Beistein J. Nanotechnol., 5: 476-484 (2014).
[5] Abedini R., Mahmoud S., Aminzadeh R., A Novel Cellulose Acetate (CA) Membrane Using TiO2 Nanoparticles: Preparation, Characterization and Permeation Study, Desalination, 277(1-3): 40-45 (2011).
[6] Abirami Saraswathia M.S.S., Ranab D., Alwarappanc S., Gowrishankard S., Kanimozhia P., Nagendrana A., Cellulose Acetate Ultrafiltration Membranes Customized with Bio-Inspired Polydopamine Coating and in Situ Immobilization of Silver Nanoparticles, New J. Chem., 10 (2019).
[8] Qin J., Li Y., Lee L., Lee H., Cellulose Acetate Hollow Fiber Ultrafiltration Membranes Made from CA/PVP 360 K/NMP/Water, J. Membr. Sci., 218: 173-183 (2003).
[9] Sadrzadeh M., Saljoughi E., Shahidi K., Preparation and Characterization of a Composite PDMS Membrane on CA Support, Polym. Adv. Technol., 21(8): 568-577 (2010).
[10] Zularisam A.W., Ismail A.F., Salim M.R., Sakinah M., Ozaki H., The Effects of Natural Organic Matter (NOM) Fractions on Fouling Characteristics and Flux Recovery of Ultrafiltration Membranes, Desalination, 212: 191-208 (2007).
[11] Roelofs K.S., Hirth T., Schiestel T., Sulfonated Poly (Ether Ether Ketone)-Based Silica Nanocomposite Membranes for Direct Ethanol Fuel Cells, J. Membr. Sci., 346: 215-226 (2010).
[12] Huang Z., Chen K., Li S., Yin X., Zhang Z., Xu H., Effect of ferrosoferric Oxide Content on the Performances of Polysulfone-Ferrosoferric Oxide Ultrafiltration Membranes, J. Membr. Sci., 315: 164-171(2008).
[13] Darvishmanesh S., Buekenhoudt A., Degrève J., Bruggen B.V.D., General Model for Prediction of Solvent Permeation Through Organic and Inorganic Solvent Resistant Nanofiltration Membranes, J. Membr. Sci., 334: 43-49 (2009).
[15] Li J., Xu Z., Yang H., Yu L., Liu M., Effect of TiO2 Nanoparticles on the Surface Morphology and Performance of Microporous PES Membrane, Appl. Surf. Sci., 255: 4725-4732 (2009).
[16] Ahn J., Chung W., Pinnau I., Guiver M.D., Polysulfone/Silica Nanoparticle Mixed-Matrix Membranes for Gas Separation, J. Membr. Sci., 314: 123-133 (2008).
[19] Xu Z., Yu L., Han L., Polymer-Nanoinorganic Particles Composite Membranes: A Brief Overview, Front. Chem. Eng., 3(3): 318-329 (2009).
[21] Chung T., Ying L., Li Y., Kulprathipanja S., Mixed Matrix Membranes (MMMs) comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation, Prog. Polym. Sci., 32: 483-507 (2007).
[22] Madaeni S.S., Ghaemi N., Alizadeh A., Joshaghani M., Influence of Photo-Induced Superhydrophilicity of Titanium Dioxide Nanoparticles on the Anti-Fouling Performance of Ultrafiltration Membranes, Appl. Surf. Sci., 257(14): 6175-6180 (2011).
[23] Mansourpanah Y., Madaeni S.S., Rahimpour A., Farhadian A., Taheri A.H., Formation of Appropriate Sites on Nanofiltration Membrane Surface for Binding TiO2 Photo-Catalyst: Performance , Characterization and Fouling-Resistant Capability, J. Membr. Sci., 330: 297-306 (2009).
[24] Nasir A.M., Goh P.S., Ismail A.F., Synthesis Route for the Fabrication of Nanocomposite Membranes, Micro and Nano Technol., Elsevier Inc., 69-89 (2020).
[25] Younas H., Ur Z., Afridi R., Zhou Y., Cui Z., Progress and Perspective of Antifouling, Pressure Driven, Flat-Sheet Nanocomposite, Polymeric Membranes in Water Treatment, J. Membr. Sci. Res. J., 6: 319-332 (2020).
[26] Campiglio C.E., Negrini N.C., Far S., Draghi L., Cross-Linking Strategies for Electrospun Gelatin Scaffolds, Materials, 12(15): 2476 (2019).
[28] Singh A., Gautam P.K., Verma A., Singh V., Shivapriya P.M., Shivalkar S., Samanta S.K., Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review, Biotechnol. Rep.,25: e00427 (2020).
[29] Rao K.G., Ashok C.H., Rao V., Chakra C.H.S., Tambur P., Green Synthesis of TiO2 Nanoparticles Using Aloe vera Extract, Int. J. Adv. Res. Phys. Sci., 2: 28-34 (2015).
[31] Liguo S., Xiaokai B., Xiaofeng L., Liuqing S., Zhongying L., Lifang C., Zhengchi H., Kai Fan., Preparation and Characterization of ZnO/Polyethersulfone (PES) Hybrid Membranes, Desalination, 293: 21-29 (2012).
[32] Ursino C., Nicolò E.D., Gabriele B., Criscuoli A., Figoli A., Development of a novel Perfluoropolyether (PFPE) Hydrophobic/Hydrophilic Coated Membranes for Water Treatment, J. Membr. Sci., 581(1): 58-71 (2019).
[33] Bouazizi A., Breida M., Achiou B., Ouammou M., Removal of Dyes by a New Nano-TiO2 Ultrafiltration Membrane Deposited on Low-Cost Support Prepared from Natural Moroccan Bentonite, Appl. Clay Sci., 148(1): 127-135 (2017).
[34] Missaoui T., Smiri M., Chmingui H., Hafiane A., Effects of Nanosized Titanium Dioxide on the Photosynthetic Metabolism of Fenugreek (Trigonella foenum-graecum L.), C.R. Biol., 340(11,12): 453-564 (2017).
[36] Torge A., Pavone G., Jurisic M., Lima-engelmann K., A Comparison of Spherical and Cylindrical Microparticles Composed of Nanoparticles for Pulmonary Application, Aerosol Sci. Technol., 53(1): 53-62 (2019).
[37] Neelapala S.D., Nair A.K., Jagadeeshbabu P.E., Synthesis and Characterisation of TiO2 Nanofibre/ Cellulose Acetate Nanocomposite Ultrafiltration Membrane, J. Exp. Nanosci., 12(1): 152-165 (2017).
[38] Abdel-naby A.S., Al-ghamdi A.A., Chemical Modification of Cellulose Acetate by N-( phenyl amino) Maleimides: Characterization and Properties, Int. J. Biol. Macromol., 68: 21-27 (2014).
[40] Ra, R.B., Rao D.K., Veeraiah N., The Role of Titanium Ions on Structural, Dielectric and Optical Properties of Li2O-MgO-B2O3 Glass System, Mater. Chem. Phys., 87: 357-369 (2004).
[41] Raghavaiah B.V., Laxmikanth C., Veeraiah N., Spectroscopic Studies of Titanium Ions in PbO-Sb2O3-As2O3 Glass System, Opt. Commun., 235: 341-349 (2004).
[42] Fukushima T., Benino Y., Fujiwara T., Dimitrov V., Komatsu T., Electronic Polarizability and Crystallization of K2O-TiO2-GeO2 Glasses with High TiO2 Contents, J. Solid State Chem., 179(12): 3949-3957 (2006).
[43] Alhalili Z., Romdhani C., Chemingui H., Smiri M., Removal of Dithioterethiol (DTT) from Water by Membranes of Cellulose Acetate (CA) and CA Doped ZnO and TiO2 Nanoparticles, J. Saudi Chem. Soc., 25(8): 101282 (2021).
[44] Vatanpour V., Siavash S., Reza A., Salehi E., Zinadini S., Ahmadi H., TiO2 Embedded Mixed Matrix PES Nanocomposite Membranes: Influence of Different Sizes and Types of Nanoparticles on Antifouling and Performance, Desalination, 292: 19-29 (2012).
[45] Hosseini S.M., Karami F., Farahani S.K., Bandehali S., Shen J., Bagheripour E., Seidypoor A., Tailoring the Separation Performance and Antifouling Property of Polyethersulfone Based NF Membrane by Incorporating Hydrophilic CuO Nanoparticles, Korean J. Chem. Eng., 37(5): 866-874 (2020).
 [46] Hammami M., Ennigrou D.J., Horchani-naifer K., Ferid M., Comparative Study of Neodymium Recovery from Aqueous Solutions by Polyelectrolytes Assisted-Ultrafiltration, Korean J. Chem. Eng., 34(7): 1-8 (2017).
[47] Mondal S., Ouni H., Dhahbi M., De S., Kinetic Modeling for Dye Removal Using Polyelectrolyte Enhanced Ultrafiltration, J. Hazard. Mater., 229-230: 381-389 (2012).
[48] Sorlier P., Denuzie A., Viton C., Domard A., Relation between the Degree of Acetylation and the Electrostatic Properties of Chitin and Chitosan, Biomacromolecules, 2: 765-772 (2001).
[49] Fradj A., Ben Hamouda S.B., Ouni H., Lafi R., Gzara L., Hafiane A., Removal of Methylene Blue from Aqueous Solutions by Poly (Acrylic Acid) and Poly (Ammonium Acrylate) Assisted Ultrafiltration, Sep. Purif. Technol., 133(8): 76-81 (2014).
[50] Akbari A., Remigy J.C., Aptel P., Treatment of Textile Dye Effluent Using A Polyamide-Based Nanofiltration Membrane, Chem. Eng. Process., 41: 601-609 (2002).
[52] Metka Š., Dra B., Vid Š., Zupanc J., Roman Š., Makovec D., Erdogmus D., Effect of Engineered TiO2 and ZnO Nanoparticles on Erythrocytes, Platelet-Rich Plasma and Giant Unilamelar Phospholipid Vesicles, BMC Vet. Res., 9(7): 3-13 (2013).
[53] Heikkilä, E., Martinez-Seara, H., Gurtovenko, A.A., Vattulainen, I., Akola, J., Atomistic Simulations of Anionic Au144(SR)60 Nanoparticles Interacting with Asymmetric Model Lipid Membranes, Biochim. Biophys. Acta - Biomembr., 1838(11): 2852-2860 (2014).
[54] Lin J., Ye W., Baltaru M., Tang Y.P., Bernstein N.J., Gao P., Balta S., Vlad M., Volodin A., Sotto A., Luis P., Zydney A.L., Der Bruggen B.V., Tight Ultrafiltration Membranes for Enhanced Separation of Dyes and Na2SO4 During Textile Wastewater Treatment, J. Membr. Sci., 514(15): 217-228 (2016).
[55] Yu S., Chen Z., Cheng Q., Lü Z., Liu M., Gao C., Application of Thin-Film Composite Hollow Fiber Membrane to Submerged Nanofiltration of Anionic Dye Aqueous Solutions, Sep. Purif. Technol., 88: 121-129 (2012).