Adsorption Mechanism of Lead on Wood/Nano-Manganese Oxide Composite

Document Type : Research Article

Authors

1 Department of Protection and Safety, Atomic Energy Commission, Damascus, P.O. Box 6091, SYRIAN ARAB REPUBLIC

2 Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091, SYRIAN ARAB REPUBLIC

3 Department of Physics, Atomic Energy Commission, Damascus, P.O. Box 6091, SYRIAN ARAB REPUBLIC

Abstract

Discharge of untreated industrial wastewater containing heavy metals such as Pb2+ is hazardous to the environment due to their high toxicity. This study reports on the adsorption, desorption, and kinetic study on Pb2+ removal from aqueous solutions using wood/Nano-manganese oxide composite (WB-NMO). The optimum pH, contact time and temperature for adsorption were found to be 5.0, 4 h and 333 K, respectively. Pseudo-second-order kinetics best described the adsorption process with an initial sorption rate of 4.0 mg g min-1, and a half-adsorption time t1/2 of 31.6 min. Best fit for adsorption isotherm was obtained with the Brunauer-Emmett-Teller (BET) model with a maximum adsorption capacity of 213 mg/g for an initial metal concentration of 60 mg/L. Both intra-particle diffusion and film diffusion contribute to the rate-determining step. Desorption experiments with 0.5 mol/L HCl, inferred the reusability of the composite. Adsorption experiment of Pb2+ from industrial wastewater confirmed that the prepared WB-NMO is a promising candidate for wastewater treatment. The WB-NMO demonstrated high Pb2+ removal efficiency and is considered as a promising alternative and reusable composite for lead removal from contaminated effluents.

Keywords

Main Subjects


[2] Cechinel M.A.P., Souza S.M.A.G.U.d., Souza A.A.U.d., Study of Lead (II) Adsorption Onto Activated Carbon Originating From Cow Bone, J Clean Prod, 65: 342-349 (2014).
[3] Özcan A.S., Gök Ö., Özcan A., Adsorption of Lead(II) Ions onto 8-hydroxy Quinoline-Immobilized Bentonite, J Hazard Mater, 161(1): 499-509 (2009).
[4] Eren E., Afsin B., Onal Y., Removal of Lead Ions by Acid Activated and Manganese Oxide-Coated Bentonite, J Hazard Mater, 161(2–3): 677-685 (2009).
[5] Al Abdullah J., Michèl H., Funel G., Féraud G., Distribution and Baseline Values of Trace Elements in the Sediment of Var River Catchment, Southeast France, Environ Monit Assess, 186(12): 8175-8189 (2014). [6] Li K., Zheng Z., Li Y., Characterization and Lead Adsorption Properties of Activated Carbons Prepared from Cotton Stalk by One-Step H3PO4 ActivationJ. Hazard Mater, 181(1-3): 440-447 (2010).
[7] Šćiban M., Radetić B., Kevrešan Ž., Klašnja M., Adsorption of Heavy Metals from Electroplating Wastewater by Wood Sawdust, Bioresour Technol, 98(2): 402-409 (2007).
[10] Shi Z., Zou P., Guo M., Yao S., Adsorption Equilibrium and Kinetics of Lead Ion Onto Synthetic Ferrihydrites, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 25-32 (2015).
[11] Sanchooli Moghaddam M., Rahdar S., Taghavi M., Cadmium Removal from Aqueous Solutions Using Saxaul Tree Ash, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 45-52 (2016).
[13] Tajiki A., Abdouss M., Synthesis and Characterization of Graphene Oxide Nano-Sheets for Effective Removal of Copper Phthalocyanine from Aqueous Media, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 1-9 (2017).
[14] Mohan D., Kumar H., Sarswat A., Alexandre-Franco M., Pittman Jr C.U., Cadmium and Lead Remediation Using Magnetic Oak Wood and Oak Bark Fast Pyrolysis Bio-Chars, Chem. Eng. J., 236: 513-528 (2014).
[15] Miró C., Baeza A., Salas A., Pastor-Valle J.f., Pastor-Villegas J., Adsorption of 241Am And 226Ra from Natural Water by Wood Charcoal, Appl. Radiat. Isot., 66(1): 95-102 (2008).
[16] Kalavathy M.H., Karthikeyan T., Rajgopal S., Miranda L.R., Kinetic and Isotherm Studies of Cu(II) Adsorption Onto H3PO4-Activated Rubber Wood Sawdust, J. Colloid. Interface. Sci., 292(2): 354-362 (2005).
[17] Wu F.-C., Tseng R.-L., Juang R.-S., Preparation of Highly Microporous Carbons From Fir Wood by KOH Activation for Adsorption of Dyes and Phenols from Water, Sep. Purif. Technol., 47(1–2): 10-19 (2005).
[18] Božić D., Gorgievski M., Stanković V., Štrbac N., Šerbula S., Petrović N., Adsorption of Heavy Metal Ions by Beech Sawdust – Kinetics, Mechanism and Equilibrium of the Process, Ecol. Eng., 58: 202-206 (2013).
[20] Zhu Z., Zeng H., Zhu Y., Yang F., Zhu H., Qin H., Wei W., Kinetics and Thermodynamic Study of Phosphate Adsorption on the Porous Biomorph-Genetic Composite of Α-Fe2O3/Fe3O4/C With Eucalyptus Wood Microstructure, Sep. Purif. Technol., 117: 124-130 (2013).
[21] Pehlivan E., Kahraman H., Sorption Equilibrium of Cr(VI) Ions on Oak Wood Charcoal (Carbo Ligni) and Charcoal Ash As Low-Cost Adsorbents, Fuel Process Techno.l, 92(1): 65-70 (2011).
[22] Yargıç A.Ş., Yarbay Şahin R.Z., Özbay N., Önal E., Assessment of Toxic Copper(II) Biosorption from Aqueous Solution by Chemically-Treated Tomato Waste, J. Clean. Prod., 88: 152-159 (2015).
[23] Martín-Lara M.A., Blázquez G., Trujillo M.C., Pérez A., Calero M., New Treatment of Real Electroplating Wastewater Containing Heavy Metal Ions by Adsorption Onto Olive Stone, J. Clean. Prod., 81: 120-129 (2014).
[25] McLaughlan R.G., Hossain S.M.G., Al-Mashaqbeh, O.A., Zinc Sorption by Permanganate Treated Pine Chips, J. Environ. Chem Eng, 3(3): 1539-1545 (2015).
[26] Ishaq M., Javed F., Amad I., Ullah H., Hadi F., Sultan S., Adsorption of Crystal Violet Dye from Aqueous Solutions Onto Low-Cost Untreated and NaOh Treated Almond Shell, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 97-106 (2016).
[27] Chen H., He J., Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment, J. Phys. Chem. C., 112(45): 17540-17545 (2008).
[29] Al Abdullah J., Al Lafi A.G., Al Masri W.a., Amin Y., Alnama T., Adsorption of Cesium, Cobalt, and Lead Onto a Synthetic Nano Manganese Oxide: Behavior and Mechanism, Water, Air, Soil Pollut, 227(7): 241 (2016).
[30] Al Lafi A.G., Al Abdullah J., Alnama T., Amin Y., Removal of Lead from Aqueous Solutions by Polyethylene Waste/Nano-Manganese Dioxide Composite, J. Polym. Environ., 25(2): 391-401 (2016).
[31] Greil P., Biomorphous Ceramics from Lignocellulosics, J. Eur Ceram. Soc., 21(2): 105-118 (2001).
[32] Davranche M., Lacour S., Bordas F., Bollinger J.C., An Easy Determination of the Surface Chemical Properties of Simple and Natural Solids, J. Chem. Educ., 80: 76-78 (2003).
[33] Wiedenhoeft, A. C.,Miller, R. B., “Structure and function of wood in Roger M. Rowell edt. Handbook of Wood Chemistry and Wood Composite”, CRC Press:  (2005).
[34] Morán J.I., Alvarez V.A., Cyras V.P., Vázquez A., Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers, Cellul., 15: 149-159 (2008).
[35] Sreenivasan S., Bhamaiyer P., Iyer K.R.K., Influence of Delignification and Alkali Treatment on the Fine Structure of Coir Fibres (Cocos Nucifera)J. Mater. Sci., 31: 721-726 (1996).
[36] Sun Y., Cheng J., Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review, Bioresour Technol, 83(1): 1-11 (2002).
[37] Gassan J., Bledzki A.K., Alkali Treatment of Jute Fibers: Relationship Between Structure and Mechanical Properties, J. Appl Polym. Sci., 71: 623-629 (1999).
[38] Jolly G., Dupont L., Aplincourt M., Lambert J., Improved Cu and Zn Sorption on Oxidized Wheat Lignocellulose, Environ. Chem. Lett., 4: 219-223 (2006).
[39] Tshabalala M.A., Surface Characterization in Roger M. Rowell (ed.), “Handbook of Wood Chemistry and Wood Composite”, CRC Press (2005).
[40] Madhava Rao M., Ramesh A., Purna Chandra Rao G., Seshaiah K., Removal of Copper and Cadmium from the Aqueous Solutions by Activated Carbon Derived from Ceiba Pentandra Hulls, J. Hazard. Mater., 129(1–3): 123-129 (2006).
[41] Turan P., Doğan M., Alkan M., Uptake of Trivalent Chromium Ions from Aqueous Solutions Using Kaolinite, J. Hazard. Mater., 148(1–2): 56-63 (2007).
[42] Salifu A., Petrusevski B., Ghebremichael K., Modestus L., Buamah R., Aubry C., Amy G.L., Aluminum (hydr)oxide Coated Pumice for Fluoride Removal from Drinking Water: Synthesis, Equilibrium, Kinetics and Mechanism, I, 228: 63-74 (2013).
[43] Langmuir I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40(9): 1361-1403 (1918).
[44] Rahman H.U., Shakirullah M., Ahmad I., Shah S., Shah A.A., Removal of Copper (II) Ions from Aqueous Medium by Sawdust of Wood, J. Chem. Soc. Pak., 27(3): 233-238 (2005).
[45] Yang S., Zhao D., Zhang H., Lu S., Chen L., Yu X., Impact of Environmental Conditions on the Sorption Behavior of Pb(II) in Na-Bentonite Suspensions, J. Hazard. Mater., 183(1–3): 632-640 (2010).
[46] Sari A., Tuzen M., Citak D., Soylak M., Equilibrium, Kinetic and Thermodynamic Studies of Adsorption of Pb(II) from Aqueous Solution onto Turkish Kaolinite Clay, J. Hazard. Mater., 149(2): 283-291 (2007).
[47] Zhu Y., Hu J., Wang J., Competitive Adsorption of Pb(II), Cu(II) and Zn(II) onto Xanthate-Modified Magnetic Chitosan, J. Hazard. Mater., 221–222: 155-161 (2012).
[48] Jiang R., Tian J., Zheng H., Qi J., Sun S., Li X., A Novel Magnetic Adsorbent Based on Waste Litchi Peels for Removing Pb(II) from Aqueous Solution, J. Environ. Manage., 155: 24-30 (2015).
[49] Tran H.V., Tran L.D., Nguyen T.N., Preparation of Chitosan/Magnetite Composite Beads and Their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution, Mat. Sci. Eng. C., 30(2): 304-310 (2010).
[50] Xu M., Zhang Y., Zhang Z., Shen Y., Zhao M., Pan G., Study on the Adsorption of Ca2+, Cd2+ and Pb2+ by Magnetic Fe3O4 Yeast Treated with EDTA Dianhydride, Chem. Eng. J., 168(2): 737-745 (2011).