An Experimental and Theoretical Study on Bicyclo-3,4-Dihydropyrimidinone Derivative: Synthesis and DFT Calculation

Document Type : Research Article

Authors

1 Department of Chemistry, Khuzestan Science and Research Branch, Islamic Azad University, Ahvaz, I.R. IRAN

2 Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, I.R. IRAN

3 Petroleum University of Technology of Ahwaz, Ahwaz, I.R. IRAN

Abstract

We report here an efficient and green method for fused Biginelli condensation reaction of aldehydes, cyclopentanone, and urea catalyzed by nano ZrO2-SO3H under solvent-free conditions. The prospect of the reusability of this catalyst has also been demonstrated without compromising on the yield of the product. On the whole, the protocol presented here is an excellent alternative to many of the previously reported procedures. So, Optimized molecular structures have been investigated by DFT/B3LYP method with 6-31G (d,p) basis set. Stability of some 4-aryl-7-benzylidene-1,3,4,5,6,7-hexahydro-4-phenyl-2H-cyclopenta[d]pyrimidin-2-one (2 a-j) derivatives and intramolecular interactions bond has been analyzed by using natural bond orbital (NBO) analysis.

Keywords

Main Subjects


[1] Heys L., Moore C.G., Murphy P.J., The Guanidine Metabolites of Ptilocaulis Spiculifer Andrelated Compounds; Isolation and Synthesis, Chem. Soc. Rev., 29: 57–67 (2000).
[2] Berlinck R.G.S., Burtoloso A.C.B., Kossuga M.H., The Chemistry and Biology of Organicguanidine Derivatives, Nat. Prod. Rep., 25: 919–954 (2008).
[3] Patil A.D., Kumar N.V., Kokke W.C., Bean M.F., Freyer A.J., Brosse C.D., Mai S., Truneh A., Faulkner D.J., Carte B., Breen A.L., Hertzberg R.P., Johnson R.K., Westley J.W., Potts B.C.M., Novel Alkaloids from the Sponge Batzella Sp.: Inhibitors of HIV Gp L20-Human CD4 Binding, J. Org. Chem., 60: 1182–1188 (1995).
[4] Snider B.B., Chen J., Patil A.D., Freyer A.J., Synthesis of the Tricyclic Portions of Batzelladines A, B and D. Revision of the Stereoehemistry of Batzelladines A and D, Tetrahedron Lett., 37: 6977–6980 (1996).
[6] Kappe C.O., Biologically Active Dihydropyrimidones of the Biginelli-Type-A Literature Survey, Eur. J. Med. Chem., 35: 1043–1052 (2000).
[7] Canto R.F.S., Bernardi A., Battastini A.M.O., Russowsky D., Eifler-Lim V.L., Synthesis of Dihydropyrimidin-2-One/Thione Library and Cytotoxic Activity Against the Human C138-Mg
and Rat C6 Glioma Cell Lines,
J. Braz. Chem. Soc., 22: 1379-1388 (2011).
[8] Bossert F., Vater W., 1,4-Dihydropyridines-A Basis for Developing New Drugs, Med. Res. Rev., 9: 291-324 (1989).
[10] Biginelli, P. Aldureides of Ethylic Acetoacetate and Ethylic Oxaloacetate, Gazz. Chim. Ital., 23: 360–416 (1893).
[11] Farhadi A., Takassi M.A., Hejazi L., Study of the Synthesis of Some Biginelli-Type Products Catalyzed by Nano-Zro2, Z. Naturforsch, 67b: 1–6 (2012).
[12] Farhadi A., Noei J., Aliyari R.H., Albakhtiyari M., Takassi M.A., Experimental and Theoretical Study on a One-Pot, Threecomponent Route to 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones Ticl3otf-[Bmim]Cl, Res. Chem. Intermed., 42: 1401–1409 (2016).
[14] Farhadi A., Takassi M.A., Hejazi L., One-Pot Synthesis of 2-Oxo-1,2,3,4-Tetrahydropyrimidines Using Homogeneous Catalyst Under Solvent-Free Conditions, Iran. Chem. Commun., 5: 35-41 (2017).
[15] Farhadi A., Takassi M.A., Enjilzadeh M., Davod F., Synthesis of Some Biginelli-Type Products: Nano Alumina Sulfonic Acid (NASA) Catalyzed Under Solvent-Free Condition, J. Appl. Chem. Res., 12:48-57 (2018).
[16] Soleymani M., Advances in the Oxidation of Biginelli Compounds, Curr. Org. Chem., 22: 890-911 (2018).
[17] Khajesamani H., Pouramiri B., Tavakolinejad Kermany E., Khabazzadeh H., An Efficient,
Three-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Using Lacl3/Clch2cooh as Environmentally Benign and Green Catalytic System,
J. Sci. I. R. Iran., 25: 323-327 (2014).
[19] Pouramiri B., Fayazi R., Tavakolinejad Kermani E., Facile and Rapid Synthesis of 3,4-Dihydropyrimidin-2(1H)-One Derivatives Using [Et3NH][HSO4] as Environmentally Benign and Green Catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 37 159-167 (2018).
[21] Benzekri Z., H. Serrar H., Boukhris S., Ouasri A., Hassikou A., Rhandour A., Souizi A., NH3(CH2)6NH3SiF6 Catalyzed Highly Efficient Synthesis of Benzimidazoles, Benzoxazoles, Benzothiazoles, Quinoxalines and Pyrimidin-2-Ones/Thiones, French-Ukr. J. Chem., 5: 60-71(2017).
[22] Padmavathy K., Krishnan K.G, Kumar C. U., Sutha P., Sivaramakarthikeyan R.,  Ramalingan C.,
Synthesis, Antioxidant Evaluation, Density Functional Theory Study of Dihydropyrimidine Festooned Phenothiazines, Chem. Select, 3: 5965-5974 (2018).
[24] Kolosov M.A., Al-Ogaili M.J.K., Parkhomenko V.S., Orlov V.D., Synthesis and Alkylation of Diethyl 6-Aryl-2-Oxo-1,2,3,6-Tetrahydropyrimidine-4,5-Dicarboxylates,Chem. Heterocyl.Compd., 49: 1484-1489 (2014).
[26] Zhu Y.L., Huang S.L., Pan Y.J., Highly Chemoselective Multicomponent Biginelli- Type Condensations of Cycloalkanones, Urea or Thiourea and Aldehydes,Eur. J. Org. Chem., 11: 2354-2367 (2005).
[28] Ajani O.O., Ituen R. I., Falomo A., Facile Synthesis and Characterization of Substituted. Pyrimidin-2(1H)-Ones and Their Chalcone Precursors, Pak. J. Sci. Ind. Res. Ser. A: Phys. Sci., 54 59-67(2011).
[32] Thomas L. H.,The Calculation of Atomic Fields. Proc. Camb. Phil. Soc., 23: 542–548 (1927).
[34] Fermi E., Un Metodo Statistico Per La Determinazione Di Alcune Prioprietà Dell'atomo. Rend. Accad. Naz. Lincei., 6: 602–607 (1927).
[34] Slater J.C.,A Simplification of the Hartree-Fock Method, Phys. Rev., 81: 385-390 (1951).
[35] Slalter J.C., A Generalized Self-Consistent Field Method, Phys. Rev., 91: 528-530 (1953).
[36] Slater J.C., Johnson K.H., Self-Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids, Phys. Rev. B5 844-853 (1972).
[37] Slalter J.C., Treatment of Exchange in Atomic, Molecular, and Solid State Theory Intern, J. Quantum Chem., 403-409 (1971).
[38] Hohenberg P., Kohn W., Inhomogeneous Electron Gas, Phys. Rev., 136: B864-B871 (1964).
[39] Kohn W., Sham L.J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140: A1133-A1138 (1965).
[40] Clark J.H., Cork D.G., Robertson M.S., Fluoride Ion Catalysed Michael Reactions, Chem. Lett. 12: 1145-1148 (1983).
[41] Grover G.J., Dzwonczyk S., Mcmullen D.M., Normadinam C.S., Sleph P.G., Moreland S.J., Pharmacologic Profile of the Dihydropyrimidine Calcium Channel Blockers SQ 32,547 and SQ 32,946, J. Cardiovasc. Pharmacol., 26: 289-294 (1995).
[42] Uray G., Verdino P., Belaj F., Kappe C. O., Fabian W.M.F., Absolute Configuration In 4-Alkyl- and 4-Aryl-3,4-Dihydro-2(1H)-Pyrimidones:  A Combined Theoretical and Experimental Investigation, J. Org. Chem., 66: 6685-6694 (2001).
[43] Chen M., Hung Z., Lin Z., Ab Initio Studies of Gas Phase Asparagine Conformers, J. Mol. Struct. (Theochem.), 719: 153-158 (2005).
[44] Sannigrahi A. B., Scheiner S., Ab Initio Calculations of Hardness and Chemical Potential of Open Shell Systems Using SCF, MP2 and MP4 Methods, J. Mol. Struct. (Theochem.) (Theochem.), 427: 79-85 (1998).
[46] Farhadi A., Takassi M.A., Applying Density Functional Theory on Tautomerism in 3,4-Dihydropyrimidin-2(1H)-Ones, Front. Chem. China., 142-146 (2011).
[47] Memarian H.R, Sabzyan H., Farhadi A., DFT Study of the Molecular Structure of 3,4-Dihydropyrimidin-2(1H)-Ones, Mont. Chem., 141: 1203-1212 (2010).
[48] Frisch M.J., Trucks G.W., Schlegel H. B., Scuseria G.E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann J. R. E., Burant J. C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J.V., Barone, Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W, Johnson B., Chen W., Wong M.W, Andres J. L., Gonzalez C.,  Head-Gordon M., Replogle E. S., Pople J. A., Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA. (1998).
[49] Subhashandrabose S., Akhil R., Krishnan R., Saleem H., Parameswari R., Sundaraganesa N., Thanikachalam V., Manikandan G., Vibrational Spectroscopic Study and NBO Analysis on Bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-Yl) Methane Using DFT Method., Spectrochim., Acta A. 77: 877-84 (2010).
[50] Krishanan A. R., Saleem H., Subhashandrabose S., Sundaraganesan N., Sebastian S., Molecular Structure, Vibrational Spectroscopic (FT-IR, FT-Raman), UV and NBO Analysis of 2-Chlorobenzonitrile by Density Functional Method, Spetrochim. Acta A., 78: 582-589 (2011).
[51] Liu J. N., Chen Z. R., Yuan S. F., Zhejiang J., Study on the Prediction of Visible Absorption Maxima
of Azobenzene Compounds,
Uni Sci B, 6: 584-589 (2005).
[52] James C., Amalraj A., Regunathan A., Jayakumar V.S., Joe I. H., Structural Conformation and Vibrational Spectroscopic Studies of 2,6‐Bis(PNN‐Dimethyl Benzylidene)Cyclohexanone Using Density Functional Theory, J. Raman Spectrosc., 37: 1381-92 (2006).
[53] Heydar P.A., Farrokhnia M., Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on Π-Delocalization, Iran. J. Chem. Chem. Eng. (IJCCE), 29: 197-210 (2010).