Lead Adsorption onto Surface Modified Nano Titania: Kinetic and Thermodynamic Studies

Document Type : Research Article

Authors

1 School of Chemical Engineering, University of Tehran, P.O. Box 11365-4563 Tehran, I.R. IRAN

2 Nuclear Science and Technology Research Center, P.O. Box 11365-8486 Tehran, I.R. IRAN

Abstract

The present work focused on the adsorption of Pb(II) from aqueous solutions by amino-functionalized nano titania in a batch system. Surface modification was based on immobilization of o-phosphoethanolamine on the surface. The effects of pH, adsorbent dose, contact time, initial metal concentration, and temperature on the adsorption process were examined. The maximum adsorption of Pb(II) was observed to occur at pH 6.0. Kinetic data showed that the adsorption process achieved equilibrium within 90 min and experimental data were fitted well by the pseudo-second-order model. According to the equilibrium data, Pb(II) adsorption was well described by the Langmuir isotherm model. According to the evaluated thermodynamic parameters at different temperatures, the adsorption was a spontaneous ( ) and endothermic ( ) process. The presence of Mg and Ca ions as interfering cations up to 150 mg/g caused no considerable lowering effect on the Pb(II) adsorption. In addition, the regeneration of the adsorbent was performed using HNO3 (0.1 mol/L). The obtained studies showed that amino-functionalized nano titania was successfully used as an efficient adsorbent for removal of the Pb(II) from aqueous solutions.

Keywords

Main Subjects


[1] Denizli A., Satiroglu N., Patir S., Bektas S., Genç Ö., Magnetic Polymethylenmethacrylate Microbeads Carrying Amine Functional Groups for Removal of Pb(II) from Aqueous Solutions, J. M. S. - Pure Appl. Chem., A37:1647-1662 (2000).
[2] Ghazy S. E., Ragab A. H., Removal of Lead Ions from Aqueous Solution by Sorptive-Flotation Using Limestone and Oleic Acid, Iran. J. Chem. Chem. Eng. (IJCCE), 26(6):83-92 (2007).
[3] Monsef Khoshhesab Z., Hooshyar Z., M. S., Removal of Pb(II) from Aqueous Solutions by Nio Nanoparticles Synthesis and Reactivity in Inorganic, Metal-Org, Nano-Met. Chem., 41:1046–1051 (2011).
[4] Pieper K. J., Nystro V. E., Park J., Jennings K., Faircloth H., Morgan J. B., Bruckner J., Edwards M. A., Elevated Lead in Water of Private Wells Poses Health Risks: Case Study in Macon County, North Carolina, Environ. Sci. Technol., 52(7): 4350–4357 (2018).
[5] Zhang W., Shi S., Zhu W., Yang C., Li S., Liu X., Hu N., Huang L., Wang R., Suo Y., Li Z., Wang J., In-Situ Fixation of All-Inorganic Mo–Fe–S Clusters for the Highly Selective Removal of Lead(II), ACS Appl. Mater. Interfaces, 9(38):32720–32726 (2017).
[6] Zhao J., Giammar D. E., Pasteris J. D., Dai C., Bae Y., Hu Y., Formation and Aggregation of Lead Phosphate Particles: Implications for Lead Immobilization in Water Supply Systems, Environ. Sci. Technol., 52(21): 12612–12623 (2018).
[7] Shi S., Zou P., Guo M.,Yao S., Adsorption Equilibrium and Kinetic of Lead Ion onto Synthetic Ferrihydrites, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 25-32 (2015).
[8] Farrokhnia A., Abdolahpour S., Abbasi Z., Removal of Pb (II) Ion and Safranin Dye from Aqueous Solution by Sheep Wool, Iran. J. Chem. Chem. Eng. (IJCCE), 38(5): 155-162 (2019).
[9] Akpomie K.G., Eluke L.O., Egbulefu A.V.I., Alisa C.O., Attenuation Kinetics and Desorption Performance of Artocarpus Altilis Seed Husk for Co (II), Pb (II) and Zn (II) Ions, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 171-186 (2018).
[10] Cheng T., Chen C., Tang R., Han C., Yuan Tian Y., Competitive Adsorption of Cu, Ni, Pb, and Cd from Aqueous Solution onto Fly Ash-Based Linde F(K) Zeolite, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 61-72 (2018).
[11] Ghanbari Pakdehi S., Adsorptive Removal of Al, Zn, Fe, Cr and Pb from Hydrogen Peroxide Solution by Ir-120 Cation Exchange Resin, Iran. J. Chem. Chem. Eng. (IJCCE), 35(1): 75-84 (2016).
[12] Chen C., Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F (K) Zeolite, Iran. Chem. Chem. Eng. (IJCCE), 33:29-35 (2014).
[13] Mustafa S., Tasleem S., Naeem A., Safdar M., Solvent Effect on the Electrophoretic Mobility and Adsorption of Cu on Iron Oxide. , Colloid Surf., A 330:8-13 (2008).
[14] Mining Waste Team Washington D. C. I. T. R. C., Chemical Precipitation, ITRC (Interstate Technology & Regulatory Council):1-6 (2010).
[15] Kansara N., Bhati L., Narang M., Vaishnavi R., Wastewater Treatment by Ion Exchangemethod: A Review of Past and Recent Researches, ESAIJ (Environmental Science, An Indian Journal), 12(4): 143-150 (2016 ).
[16] Tien T.T., Linh D. H., Vu L. ., Hoa P. T. T., Phuong N.T,T., Tran Le Luu T. L., Electrochemical Water Treatment Technology in Viet Nam:  Achievement & Future Development, Science Journal of Chemistry, 5(6): 87-94 (2017 ).
[17] Garud R. M., Kore S. V., KoreKore V. S., Kulkarni G. S., A Short Review on Process and Applications of Reverse Osmosis, Universal Journal of Environmental Research and Technology, 1(3):233-238 (2011 ).
[18] Ariffin N., Abdullah M. M.A.B., Zaino M. R. R. M. A., Murshed M.F., Zain H., Faris M.A., Bayuaji R., Review on Adsorption of Heavy Metal in Wastewater by Using GeopolymerMATEC Web of Conferences, 97:1-8 (2017).
[19] Ince M., Ince O. K., An Overview of Adsorption Technique for Heavy Metal Removal from Water/Wastewater: A Critical Review, Int. J. Pure Appl. Sci., 3(2):10-19 (2017).
[20] Mutin P. H., Guerrero G.,Vioux A., Hybrid Materials from Organophosphorus Coupling Molecules, J. Mater. Chem., 15(35): 3761-3768 (2005).
[21] Liu F., Quana B., Liu Z., Chena L., Surface Characterization Study on SnO2 Powder Modified by Thiourea, Materials Chemistry and Physics, 93: 301–304 (2005).
[22] Neouze M. A., Schubert U., Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands, Monatsh Chem, 139:183–195 (2008).
[23] Ramirez E., Jansat S., Philippot K., Lecante P., Montserrat Gomez M., Masdeu-Bulto´ A.M., Chaudret B., Influence of Organic Ligands on the Stabilization of Palladium Nanoparticles, Journal of Organometallic Chemistry, 689:4601-4610 (2004).
[25] De Palma R., Reekmans G., Laureyn W., Borghs G., Maes G., Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible, Analytical Chemistry, 79(19): 7540-7548 (2007).
[26] Mutin P. H., Guerrero G.,Vieux A., Hybrid Materials from Organophosphorus Coupling Molecules, J. Mater. Chem., 15:3761–3768 (2005).
[27] Guerrero G., Mutin P. H.,Vieux A., Anchoring of Phosphonate and Phosphinate Coupling Molecules on Titania Particles, Chem. Mater., 13(11):4367-4373 (2001).
[28] Kakihana M., Nagumo T., Okamoto M., Kakihana H., Coordination Structures for Uranyl Carboxylate Complexes in Aqueous Solution Studied by Ir and Carbon-13 Nmr Spectra, J. Phys. Chem., 91 (24): 6128- 6136 (1987).
[29] Myller A. T., Karhe J. J., Pakkanen T. T., Preparation of Aminofunctionalized TiO2 Surfaces by Binding
of Organophosphates
, Appl. Surf. Sci., 257(5): 1616-1622 (2010).
[30] Iravani E., A. Allahyari S., Shojaei Z., Torab-Mostaedi M., Surface Modification and Spectroscopic Characterization of TiO2 Nanoparticles with 2-Aminoethyl Dihydrogen Phosphate, J. Braz. Chem. Soc., 26(8): 1608-1616 (2015).
[31] Nosaka A. Y., Nosaka Y., Characteristics of Water Adsorbed on TiO2 Photocatalytic Surfaces as Studied by 1h Nmr Spectroscopy, Bull. Chem. Soc. Jpn., 78:1595-1607 (2005).
[33] Spori D. M., Venkataraman N. V., Tosatti S. G., Durmaz F., Spencer N. D., Zuercher S., Influence of Alkyl Chain Length on Phosphate Self-Assembled Monolayers, Langmuir, 23 (15):8053-8060 (2007).
[35] Malkoc E., Nuhoglu Y., Dundar M., Adsorption of Chromium (VI) on Pomace-an Olive Oil Industry Waste: Batch and Column Studies, J. Hazard, Mater., 138:142-151 (2006).
[36] Taty-Costodes V. C., Fauduet H., Porte C., Delacroix A., Removal of Cd(II) and Pb(II) Ions, from Aqueous Solutions, by Adsorption onto Sawdust of Pinus Sylvestris, J. Hazard. Mater.,, 105:121–142 (2003).
[37] Poursani A. S., Nilchi A., Hassani A., Shariat S. M., Nouri J., The Synthesis of Nano TiO2 and Its Use for Removal of Lead Ions from Aqueous Solution, Journal of Water Resource and Protection, 8(4): 438-448 (2016).
[38] Zhao X., Jia Q., Song N., Zhou W., Li Y., Adsorption of Pb(II) from an Aqueous Solution by Titanium Dioxide/Carbon Nanotube Nanocomposites: Kinetics, Thermodynamics, and Isotherms, J. Chem. Eng. Data, 55:4428–4433 (2010).
[39] Sahmetlioglu E., Yilmaz E., Aktas E., Soylak M., Polypyrrole/Multi-Walled Carbon Nanotube Composite for the Solid Phase Extraction of Lead(II) in Water Samples, Talanta, 119:447–451 (2014).
[40] Kołodyńska D., Gęca M., Skwarek E., Goncharuk O., Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions, Nanoscale Research Letters, 13 (96):1-12 (2018).
[41] Da’na E., De Silva N., Sayari A., Adsorption of Copper on Amine-Functionalized Sba-15 Prepared by Co-Condensation, Chem. Eng. J., 166: 454-459 (2011).
[42] Ghaedi M., Ghezelbash G. R., Marahel F., Ehsanipour S., Najibi A., Soylak M., Equilibrium, Thermodynamic, and Kinetic Studies on Lead (II) Biosorption from Aqueous Solution by Saccharomyces Cerevisiae Biomass, Clean – Soil, Air, Water 38(9): 877–885 (2010).
[44] Yang S. m., Li J., Shao D., Hu J., Wang X., Adsorption of Ni (II) on Oxidized Multi-Walled Carbon Nanotubes: Effect of Contact Time, pH, Foreign Ions and Paa, J. Hazard. Mater.,, 166: 109-166 (2009).
[45] Abbasizadeh S., Keshtkar A. R., Mousavian M. A., Sorption of Heavy Metal Ions from Aqueous Solution by a Novel Cast Pva/TiO2 Nanohybrid Adsorbent Functionalized with Amine Groups, J. Ind. Eng. Chem., 20:1656-1664 (2014).
[46] Kütahyali C., Sert Ş., Çetinkaya B., Inan S., Eral M., Factors Affecting Lanthanum and Cerium Biosorption on Pinus Brutia Leaf Powder, Sep. Sci. Technol., 45: 1456-1462 (2010).
[47] Shaheen S. M., Derbalah A. S., Moghanm F. S., Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System, Int. J. Environ. Sci. Dev., 3(4):362-367 (2012).
[48] Debnath S., Ghosh U. C., Nanostructured Hydrous Titanium (IV) Oxide: Synthesis, Characterization and Ni (II) Adsorption Behavior, Chem. Eng. J., 152(2): 480-491 (2009).
[49] Jakubke H. D., Jeschkeit H., in: “Concise Encyclopedia Chemistry", de Gruyter, ed. Berline E.M., New York, USA, 1993.
[50] Vuković G.D., Marinković A.D., Čolić M., Ristić M.D., Aleksić R., Perić-Grujić A.A., Uskoković P.S., Removal of Cadmium from Aqueous Solutions by Oxidized and Ethylenediamine-Functionalized Multi-Walled Carbon Nanotubes, Chem. Eng. J., 157:238-248 (2010).
[52] Yang X., Xu G., Yu H., Removal of Lead from Aqueous Solutions by Ferric Activated Sludge-Based Adsorbent Derived from Biological Sludge, Arabian Journal of Chemistry:in press (2016).
[53] Amarasinghe B. M. W. P. K., Williams R. A., Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater, Chemical Engineering Journal 132: 299–309 (2007).
[54] Shakeri A., Hazeri N., Removal of Lead (II) from Aqueous Solution Using Cocopeat: An Investigation on the Isotherm and Kinetic, Iran. J. Chem. Chem. Eng. (IJCCE), 31(3):45-50 (2012).
[55] S. P. A., Nilchi A., Hassani A., Shariat S. M.,Nouri J., The Synthesis of Nano TiO2 and Its Use for Removal of Lead Ions from Aqueous Solution, Journal of Water Resource and Protection, 8:438-448
(2016).
[56] Onwordi C. T., Uche C. C., Ameh A. E., Petrik L. F., Comparative Study of the Adsorption Capacity of Lead (II) Ions onto Bean Husk and Fish Scale from Aqueous Solution, Journal of Water Reuse and Desalination: [in press] (2019).
[57] Yao S., Sun S., Wang S., Shi Z., Adsorptive Removal of Lead Ion from Aqueous Solution by Activated Carbon/Iron Oxide Magnetic Composite, Indian Journal of Chemical Technology, 23:146-152 (2016).
[58] Amin M. T., Alazba A. A., Amin M. N., Absorption Behaviours of Copper, Lead, and Arsenic in Aqueous Solution Using Date Palm Fibres and Orange Peel: Kinetics and Thermodynamics, Pol. J. Environ. Stud., 26(2): 543-557 (2017).
[59] Montazer-Rahmatia M.M., Rabbania P., Abdolalia A., Keshtkar A. R., Kinetics and Equilibrium Studies on Biosorption of Cadmium, Lead, and Nickel Ions from Aqueous Solutions by Intact and Chemically Modified Brown Algae, Journal of Hazardous Materials, 185 401–407 (2011).
[60] Naseem R., Tahir S. S., Wat. Res., Removal of Pb(II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent, Water Research, 35(16): 3982–3986 (2001).