Geo-Chemical Exploration of Granite Mining Waste Using XRD, SEM/EDX and AAS Analysis

Document Type : Research Article

Authors

Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, A.P, INDIA

Abstract

The purpose of the study was to investigate the mineralogical and Heavy Metals (HMs) present in the granite mining soils in Chimakurthy, India. The mineral exploration of mining
soils were identified by X-Ray Diffractometer (XRD) pattern analysis. However, the morphological features and quantitative HMs were detected by Scanning Electron Microscopy/Energy Dispersed Spectroscopy (SEM/EDS). The relative concentrations of HMs measured by Atomic Absorption Spectrometry (AAS). In this study, the major minerals were identified as Quartz, Albite, Anorthite, K-Feldspars, Hornblende, Muscovite, Annite, Lepidolite, Illite, Clintonite, Enstatite, Ferrosilite, Kaolinite, Kyanite, Augite, and Phologopite. Moreover, the presence of six HMs such as Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn) and Manganese (Mn), and their relative concentrations were measured.  The concentrations of HMs in three groups of mining soils were
in the range of Cr: 149-177 mg/kg (>100), for Co: 128-175 mg/kg (>50), for Ni: 166-204 mg/kg (>50), for Cu: 288-363 mg/kg (>100), for Zn: 433-548 mg/kg (>200) and for Mn: 714-769 mg/kg (<2000) as compared with maximum permissible levels set by standard organizations (WHO/FAO) limits. The results demonstrated that the HMs concentrations in mining soils were exceeded WHO/FAO limits except for Mn.
The study is useful for assessment of environmental impact due to excessive deposition of mineral waste and assessment of the quality of investigated granites based on their mineralogical aspect, particularly in the production of granite stones.

Keywords

Main Subjects


[1] Chen Y., Hu S., Wei K., Hu R., Zhou C., Jing L., Experimental Characterization and Micromechanical  Modelling of Damage-Induced Permeability Variation in Beishan Granite, Int. J. Rock. Mech. Min. Sci.,71: 64–76 (2014).
[2]    Sierra C., Martínez J., Menéndez-Aguado J.M., Afif E., Gallego J.R., High Intensity Magnetic Separation for the Clean-up of a Site Polluted by Lead Metallurgy, J. Hazard. Mater.,249: 194–201 (2013).
[3]    Todorović N., Hansman J., Mrđa D., Nikolov J., Kardos R., Krmar M., Concentrations of 226Ra, 232Th and 40K in Industrial Kaolinized Granite, J. Environ. Radioact.,168: 10–14 (2017).
[4]    Li H., Ye X., Geng Z., Zhou H., Guo X., Zhang Y., The Influence of Biochar Type on Long-Term Stabilization for Cd and Cu in Contaminated Paddy Soils, J. Hazard. Mater., 304:40–48(2016).
[5]    Ko D., Lee J.S., Patel H.A., Jakobsen M.H., Hwang Y., Yavuz C.T.,  Selective Removal of Heavy Metal Ions by Disulfide Linked Polymer Networks, J. Hazard. Mater., 332: 140–148 (2017).
[6]    Alvarez A., Saez J.M., Davila Costa J.S., Colin V.L., Fuentes M.S., Cuozzo S.A., Actinobacteria: Current Research and Perspectives for Bioremediation of Pesticides and Heavy Metals, Chemosphere., 166:41–62  (2017).
[8]    Chang B.U., Koh S.M., Kim Y.J., Seo J.S., Yoon Y.Y., Row J.W., Nation Wide Survey on the Natural Radionuclides in Industrial Raw Minerals in South Korea, J. Environ. Radioact., 99: 455–460 (2008).
[9]    Quazi S., Sarkar D., Datta R., Human Health Risk from Arsenical Pesticide Contaminated Soils: A Long-Term Greenhouse Study, J. Hazard. Mater., 262:1031–1038 (2013).
[10] Parsons C., Margui Grabulosa E., Pili E., Floor G.H., Roman-Ross G., Charlet L., Quantification of Trace Arsenic in Soils by Field-Portable X-Ray Fluorescence Spectrometry: Considerations for Sample Preparation and Measurement Conditions, J.Hazard. Mater.,262:1213–1222 (2013).
[12] Gabarrón M., Faz A., Zornoza R., Acosta J.A., Assessment of Metals Behaviour in Industrial Soil Using Sequential Extraction , Multivariable Analysis and a Geostatistical Approach, J. Geochemical. Explor., 172:174–183 (2017).
[13] Esshaimi M., Naaila O., Abdelhay E.L.G., Fatima B., Manuel V., Laila M., Speciation of Heavy Metals
in the Soil and the Tailings , in the Zinc-Lead Sidi Bou Othmane Abandoned Mine,
 J. Environ. Earth. Sci.,3:138–147 (2013).
[14] Nagaraju J., Chetty T.R.K., Imprints of Tectonics and Magmatism in the South Eastern Part of the Indian Shield : Satellite Image Interpretation, J. Ind. Geophys. Union.,18(2):165–182 (2014).
[15] Silva Z.C.G., Geochemistry of the Gabbro-Anorthosite Complex of Southwest Angola, J. African. Earth. Sci., 10:683–692 (1990).
[16] Lockwood C.L., Mortimer R.J.G., Stewart D.I., Mayes W.M., Peacock C.L., Polya D.A., Mobilisation of Arsenic from Bauxite Residue (Red Mud) Affected Soils: Effect of pH and Redox Conditions, Appl. Geochemistry., 51:268–277 (2014).
[17] Sanderson P., Naidu R., Bolan N., Lim JE., Ok Y.S., Chemical Stabilisation of Lead in Shooting Range Soils with Phosphate and Magnesium Oxide: Synchrotron Investigation, J. Hazard. Mater., 299: 395–403 (2015).
[18] Fang W., Wei Y., Liu J., Comparative Characterization of Sewage Sludge Compost and Soil: Heavy Metal Leaching Characteristics, J. Hazard. Mater., 310:1–10 (2016).
[19] Merdoud O., Cameselle C., Boulakradeche MO., Akretche D.E., Removal of Heavy Metals From Contaminated Soil by Electrodialytic Remediation Enhanced with Organic Acids, Environ. Sci. Process. Impacts,. 18: 1440–1448 (2016).
[20] Popov K., Glazkova I., Myagkov S., Petrov A., Sedykh E., Bannykh L., Zeta-Potential of Concrete in Presence of Chelating Agents, Colloids Surfaces A Physicochem. Eng. Asp., 299:198–202 (2007).
[21] Ravindran A., Elavarasi M., Prathna T.C., Raichur A.M., Chandrasekaran N., Mukherjee A., Selective Colorimetric Detection of Nanomolar Cr (VI) in Aqueous Solutions Using Unmodified Silver Nanoparticles, Sensors. Actuators. B. Chem., 167: 365–371 (2012).
[22] Swamy V.S., Prasad R.A.M., Green Synthesis of Silver Nanoparticles from the Leaf Extract of Santalum Album and Its Antimicrobial Activity, J. of Optoelectronics and Bio. Mat., 4: 53-59 (2012).
[23] Velu V., Das M., Raj N.A.N., Dua K., Malipeddi H., Evaluation of in Vitro and in Vivo Anti-Urolithiatic Activity of Silver Nanoparticles Containing Aqueous Leaf Extract of Tragia Involucrata, Drug. Deliv. Transl. Res.,7: 439–449 (2017).
[24] Silva Y.J.A.B. da., Nascimento C.W.A .do., van Straaten P., Biondi C.M., Souza Júnior V.S de., Silva Y.J.A.B. da., Effect of I- and S-Type Granite Parent Material Mineralogy and Geochemistry on Soil Fertility:
A Multivariate Statistical and Gis-Based Approach,
Catena., 149: 64–72 (2017).
[25] Bacarji E., Toledo Filho R.D., Koenders E.A.B., Figueiredo EP., Lopes JLMP., Sustainability Perspective of Marble and Granite Residues as Concrete Fillers, Constr. Build. Mater., 45:1–10 (2013).
[27] Medina G., Sáez del Bosque IF., Frías M., Sánchez de Rojas MI,. Medina C., Granite Quarry Waste
as a Future Eco-Efficient Supplementary Cementitious Material (SCM): Scientific and Technical Considerations,
J. Clean. Prod., 148: 467–476 (2017).
[29] Poorsadeghi Samira., Kassaee., Mohammad Zaman., Fakhri., Hanieh., Mirabedini., Maryam., Removal
of Arsenic from Water Using Aluminum Nanoparticles Synthesized through Arc Discharge Method,
Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 91-99 (2017).
[30] Tavasoli, Ahmad., Karimi., Saba., Zolfaghari., Zahra., Taghavi., Somayeh., Amirfirouzkouhi., Hamideh., Babatabar., Mokhtar., Cobalt Loading Effects on the Physico-Chemical Properties and Performance of Co Promoted Alkalized MoS2/CNTs Catalysts for Higher Alcohols Synthesis, Iran. J. Chem. Chem. Eng. (IJCCE), 32(1): 21-29 (2013).
[31]    Acar., Ramazan., Özcan., Mehmet Musa., Kanbur., Gülah., Dursun., Nesim., Some Physico-Chemical Properties of Edible and Forage Watermelon Seeds, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4):41-47 (2012).
[32] Taghavi Mahmoud., Sanchooli Moghaddam Marziyeh., Rahdar Somayeh., Cadmium Removal from Aqueous Solutions Using Saxaul Tree Ash,  Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 45-52 (2016).
[33] Xiang., Guoqiang.,Wen., Shengping., Jiang., Xiuming., Liu., Xing., He., Lijun., Determination of Trace Copper(II) in Food Samples by Flame Atomic Absorption Spectrometry After Cloud Point Extraction, Iran. J. Chem. Chem. Eng. (IJCCE), 30(3): 101-107 (2011).
[34] Sasaki K., Haga T., Hirajima T., Kurosawa K., Tsunekawa M., Distribution and Transition of Heavy Metals in Mine Tailing Dumps, Mat. Transactions., 43: 2778-2783 (2002).
[35] James Dean Brown., Standard Error vs. Standard Error of Measurement. Shiken: JALT Testing & Evaluation SIG Newsletter, 3(1):20-25 (1999).
[36] Douglas G. Altman., J. Martin Bland., Statistical Notes: Standard Deviations and Standard Errors, BMJ, 331 (7521): 903 (2005).
[37] Kumar M.M., Krishna G.V., Reddy S.V.B., Kumar R.A., Ratnakar J., The Boggulakonda Gabbros, Prakasam District, Andhra Pradesh, India: A Rich Source of Building Material, IOSR, J. Mech. Civ. Eng., 16:84-89 (2016).
[39] Tchadjié L.N., Djobo J.N.Y., Ranjbar N., Tchakouté H.K., Kenne B.B.D., Elimbi A., Potential of Using Granite Waste as Raw Material for Geopolymer Synthesis, Ceram. Int.,42: 3046-3055 (2016).
[40] Go G.H., Lee S.R., Kim Y.S., A Reliable Model to Predict Thermal Conductivity of Unsaturated Weathered Granite Soils, Int. Commun. Heat. Mass. Transf.,74:82–90 (2016).
[41] Pea Gonzlez E., Surez Lpez J., Delgado Martn J., Jcome Burgos A., Puertas Agudo J., Analysis of
the Mobilization of Solid Loads and Heavy Metals in Runoff Waters from Granite Quarries
, Environ. Geol., 50:823–834 (2006).
[42] Opaluwa O., Aremu M., Ogbo L., Abiola K., Odiba I., Abubakar M., Heavy Metal Concentrations in Soils,  Plant Leaves and Crops Grown Around Dump Sites in Lafia Metropolis, Nasarawa State, Nigeria, Pelagia. Res. Libr., 3:780–784 (2012).