The Effects of pH and Chelating Agent on Synthesis and Characterization of Ni Mo/γ- Alumina Nanocatalyst for Heavy Oil Hydrodesulfurization

Document Type : Research Article

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry and Chemical Engineering, Buin Zahra Branch, Islamic Azad University, Buin Zahra, I.R. IRAN

Abstract

In this research, various organic additives (as a chelating agent) were used to prepare NiMo/ 𝛾-Al2O3 bimetallic catalysts. Then effects of additives and pH variation were studied on textural properties, morphology, and size of nanocatalyst particles, interaction, and loading of active metals on a support.  Additionally, this research evaluated the activity of catalysts and compared them with commercial and catalysts in the absence of additives. The metal oxide nanoparticles were prepared and impregnated on 𝛾-Al2O3 in-situ by using the wetness impregnation method, under conditions 60°C and calcination temperature 520°C. The supported nanocatalyst was calcined to remove the volatile materials and gases. The catalysts were characterized by TPR, BET, BJH, AAS, FT-IR, SEM, and XRD. The prepared nanocatalyst displayed the enhanced catalytic activity for the heavy oil hydrodesulfurization (HDS) containing 21 g/L sulfur. At the acidic pH, the activity of the catalyst was promoted by using EDTA compound as a chelating agent. The sulfur content of the feed was decreased up to 2 g/L at 380°C, 60 bar, and LHSV 1.5h-1 showing an efficient catalyst with the conversion of 90.47%.

Keywords

Main Subjects


[1] Huang Z.D., Bensch W., Lotnyk A., Kienle L., Fuentes S., Bocarando J., Alonso G., Ornelas C., SBA-15 as Support for NiMo HDS Catalysts Derived from Sulfur-Containing Molybdenum and Nickel Complexes: Effect of Activation Mode, J. mole. Catal. A: Chemical 323: 45-51(2010)
[2] Bej S.K., Maity S.K., Turaga U.T., Search for an Efficient 4-6-DMDBT Hydrodesulfurization Catalyst, Ener. & Fuels 18:1227-1237 (2004)
[3] Escobar J., De Los Reyes J.A., Ulin C. A., Barrera M.C., Highly Active Sulfide CoMo Catalysts Supported on (ZrO2- TiO2)/Al2O3, Mate. Chem. and Phys. 143:213-222 (2013)
[4] Pawelec B., Navarro R.M., Campos – Martin J.M., Lopez Agudo A. Vasudevan P.T., Fierro J.L.G., Silica- Alumina – Supported Transition Metal Sulfide Catalysts for Deep HydrodesulfurizationCatal. Today 86: 73-85 (2003)
[5] Shahidian Z., Zare K., Moosavi M., Modification of Mesoporous Extrudate Gamma Alumina through Thermal Ammonia Treatment, Iran. J. Chem. Chem. Eng. (IJCCE), 39(3): 61-69 (2019).
[7] Shahidian Z., Zare K., Moosavi M., Improvement of Heavy Oil Hydrodesulfurization Catalyst Support Properties by Acetic Acid Treatment, Iran. J. Chem. Chem. Eng. (IJCCE), 39(3): 71-80 (2019)
[8] Parviz D., Kazemeini M., Rashidi A.M., Jafari Jozani Kh., Synthesis and Characterization of MoO3  Nanostructures by Solution Combustion Method Employing Morphology and Size Control, J. Nanopart. Res. 12:1509-1521(2010)
[9] Liu H., Liu C., Yin C., Chai Y., Li Y., Liu D., Liu B., Li X., Wang Y., Li X., Preparation of Highly Active Unsupported Nickel – Zinc- Molybdenum Catalysts for the Hydro Desulfurization of Dibenzothiophene, Appl. Catal. B: Environmental 174-175: 264-276 (2015)
[10] Yi Y., Zhang B., Jin X., Wang L., Williams C.T., Xiong G., Su D., Liang C. Unsupported NiMoW Sulfide Catalysts for Hydro Desulfurization of Dibenzothiophene by Thermal Decomposition of Thiosalts, J. Mol. Catal. A: Chemical, 351:120-127 (2011).
[11] Eijsbouts S., Mayo S.W., Fujita K., Unsupported Transition Metal Sulfide Catalysts: from Fundamentals to Industrial Application, Appl. Catal. A: General 322: 58-66 (2007).
[12] Mandal S., Lahiri S., Synthesis of Molybdenum Nanoparticle by in Situ 𝛾 – RadiationAppl. Rad. and Iso. 70: 2340 – 2343(2012)
[13] Kisszekelyi P., Alammar A., Kupai J., Husztly P., Barabas J., Holtzl T., Szente L., Bawn C., Adams R., Szekely G., Asymmetric Synthesis with Cinchona- Decorated Cyclodextrin in a Continuous-Flow Membrane Reactor, J. Catal., 371: 255-261(2019).
[14] Didaskalou C., Kupai J., Cseri L., Barabas J., Vass E., Holtzl T., Szekely G., Membrane – Grafted Asymmetric Organocatalyst for an Integrated Synthesis-Separation Platform, ACS Catal. 8: 7430-7438 (2018).
[16] Sun M., Nicosia D., Prins R., The Effects of Fluorine, Phosphate and Chelating Agents on Hydrotreating Catalysts and Catalysis, Catal. Today 86:173-189 (2003).
[17] Shimizu T., Hiroshima K., Honma T., Mochizuki T., Yamada M., Highly Active Hydrotreatment Catalysts Prepared with Chelating Agents, Catal. Today 45: 271-276 (1998).
[18] Kishan G., Coulier L., de Beer V.H.J., Van Veen J.A.R., Niemantsverdriet J.W., Sulfidation and Thiophene Hydrodesulfurization Activity of Nickel Tungsten Sulfide Model Catalysts, Prepared Without and with Chelating Agents, J. Catal. 196: 180-189 (2000).
[19] Suarez-Toriello V.A., Santolalla-Vargas C.E., de los Reyes J.A., Vazquez-Zavala A., Vrinat M., Geantet C., Influence of the Solution Ph in Impregnation with Citric Acid and Activity of Ni/W/Al2O3 Catalysts, J. Mol. Catal. A Chem. 404: 36-46(2015).
[20] Singh R., Kunzru D., Sivakumar S., Monodispersed Ultrasmall NiMo Metal Oxide Nanoclusters as Hydrodesulfurization Catalyst, Appl. Catal. B: Environmental, 185: 163–173 (2016).
[24] Khadem-Hamedani B., Yaghmaei S., Fattahi M., Mashayekhan S., Hoseini-Ardali S.M., Mathematical Modeling of a Slurry Bubble Column Reactor for Hydrodesulfurization of Diesel Fuel: Single- and Two-Bubble Configuration, Chem. Eng. Res. Des., 100: 362-376 (2015).
[25] Dr. Ajay Dalai, Dr. John Adjaye, Head of the Department, Chemical and Biological Engineering, University of Saskatchewan, 57 Compus Drive, Saskatoon, Saskatchewan, Canada S7N5A9.
[26] Hiroshima K., Mochizuki T., Honma T., Shimizu T., Yamada M., High HDS Activity of Co-Mo / Al2O3 Modified by Some Chelates and Their Surface Fine Structures, Appl. Surf. Sci. 121/122: 433-436(1997).
[27] Mazoyer P., Geantet C., Diehl F., Loridant S., Lacroix M., Role of Chelating Agent on the Oxidic State of Hydrotreating Catalysts, Catal. Today 130: 75-79 (2008).
[28] Daag M., Chianlli R.R., Structure-Function Relations in Molybdenum Sulfide Catalysts: the ‘Rim-Edge’ Model, J. of Catal., 149: 414-427 (1994).
[29] Jeziorowski H., Knozinger H., Raman and Ultraviolet Spectroscopic Characterization of Molybdenum on Alumina Catalysts, J. Phys. Chem., 83: 1166 (1979).
[30] Payen E., Grimblot j., Kasztelan S., Study of Oxidic And Reduced Alumina- Supported Molybdate and Heptamolybdate Species by in Situ Laser Raman Spectroscopy, J. Phys. Chem., 91: 6642 – 6648
(1987).
[31] Hu H., Wachs I.E., Bare S.R., Surface Structures of Supported Molybdenum Oxide Catalysts: Characterization by Raman and Mo L3- Edge XANES, J. Phys. Chem. 99:10897-10910 (1995).
[32] Escobar J., Barrer M., Gutierrez A., Cortes-Jacome M., Angeles-Chavez A., Toledo J., Solis-Casados D., Highly Active P-doped Sulfided NiMo/Alumina HDS Catalysts from Mo-blue by Using Saccharose as Reducing Agents Precursor, Appl. Catal. B: Environmental, 237: 708–720 (2018).
[34] Bihan L.L., Blanchard  P., Fournier M., Grimblot J., Payen E., Raman Spectroscopic Evidence for the Existence of 6-Molybdoaluminate Entities on an Mo/Al2O3 Oxidic Precursor, J. Chem. Soc. Faraday Trans., 94: 937-940 (1998).
[35] Al-Megren H., Huang Y., Chen H., Alkinany M., Gonzalez-Cortes S., Aldrees S., Xiao T., Effect of Urea/Metal Ratio on the Performance of NiMoP/Al2O3 Catalyst for Diesel Deep HDS, Appl. Petrochem Res., 5: 173-180 (2015).
[37] Zhang D., Duan A., Zhao Z., Gao G., Jiang G., Chi K., Chuang K.H., Preparation, Characterization and Hydrotreating Performance of ZrO2- Al2O3 Supported NiMo Catalysts, Catal. Today, 149: 62-68 (2010).
[38] Choi J., Yoo K.S., Kim S.D., Park H.K., Chul-Woo Nam C.W., Jinsoo Kim J., Synthesis of Mesoporous Spherical γ -Al2O3 Particles with Varying Porosity by Spray Pyrolysis of Commercial Boehmite, J. Ind. Eng. Chem., 56: 151-156 (2017).
[40] Van Veen J.A.R., Colijn H.A., Hendriks P.A.J.M., Vanwelsenes A.J., On the Formation of Type I and Type II NiMoS Phases in NiMo/Al2O3 Hydrotreatment catalysts and Its Catalytic Implications, Fuel proc. Tech., 35: 137-157 (1993).
[41] Blanchard P., Lamonier C., Griboral A., Payen E., New Insight in the Preparation of Alumina Supported Hydrotreatment Oxidic Precursors: A Molecular Approach, Appl. Catal. A: General, 322: 33 – 45 (2007).
[43] Pashigreva A.V., Bukhtiyarova G.A., Klimov O.V., Chesalov Y.A., Litvak G.S., Noskov A.S., Activity and Sulfidation Behavior of the CoMo /Al2O3 Hydrotreating Catalyst: the Effect of Drying Condition, Catal. today, 149: 19-27 (2010).
[44] Venkatesh P., Bhaskar M., Sakthivel S., Selvaraju N., Pilot Plant Studies on Accelerated Deactivation of Commercial Hydrotreating Catalyst, Petro. Scie. Tech., 28: 93-102 (2010).
[45] Fatemi S., Abolhamd G., Moosavian M.A., Mortazavi Y., The Effect of Coking on Kinetics oh HDS Reaction under Steady and Transient States, Iran. J. Chem. Chem. Eng.(IJCCE), 23(2): 1-11 (2004).
[46] Remesat D., Young B., Svrcek W.Y., Improving Vacuum Gas Oil Hydrotreating Operation via a Lumped Parameter Dynamic Simulation Modeling Approach, Chem. Eng. Res. Des., 87: 153-165 (2009).