Novel Flyweight Three-Dimensional Self-Assembled Graphene Oxide/Octa(Aminophenyl) Polyhedral Oligomeric Silsesquioxane Hybrid Aerogels

Document Type : Research Article

Authors

1 Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, I.R. IRAN

2 Space Transportation Research Institute, Iranian Space Research Center, Tehran, I.R. IRAN

Abstract

Herein, flyweight organic-inorganic hybrid scaffolds were fabricated by self-assembly and reduction of graphene oxide via covalent reaction of octa(aminophenyl) polyhedral oligomeric silsesquioxane with graphene oxide. Octa(aminophenyl) polyhedral oligomeric silsesquioxane created a decorative coating on the graphene oxide surface. It acts as a nano-crosslinker, especially on the overlapped-zone of graphene oxide platelets to bind them close-fitting. The resulting hybrid hydrogel was transformed into aerogel by the solvent exchange process with liquid carbon dioxide, followed by liquid carbon dioxide supercritical drying.  Different concentrations of graphene oxide and octa(aminophenyl) polyhedral oligomeric silsesquioxane were prepared and the structure-property relationship of obtained aerogels is elucidated. The bulk density and porosity of the aerogels are located between the super-low values of 2.7 to 5.9 mg cm-3 and beyond 99.5 %, respectively. According to the adsorption-desorption isotherms of BET-technique, the surface area of obtained aerogels was between 250 to 713 m2/g. The findings remark the potential application of obtained aerogels in the production of supercapacitors, lithium-ion batteries, solar cells, etc. in energy storage and conversion devices, electrode materials, sensors, gas/oil/dye adsorbents, and high-temperature insulators in the aerospace industry.

Keywords

Main Subjects


[1] Boehm H.-P., Graphene—How a Laboratory Curiosity Suddenly Became Extremely Interesting, Angewandte Chemie International Edition, 49(49): 9332-9335 (2010).
[2] Lee C., Wei X., Kysar J.W., Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321(5887): 385-388 (2008).
[3] Orlita M., Faugeras C., Plochocka P., Neugebauer P., Martinez G., Maude D.K., Barra A.L., Sprinkle M., Berger C., de Heer W.A., Potemski M., Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene, Physical Review Letters, 101(26): 267601 (2008).
[4] Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, 8(3): 902-907 (2008).
[5] Park S., Ruoff R.S., Chemical Methods for the Production of Graphenes, Nature Nanotechnology, 4: 217-224 (2009).
[6] Chen D., Feng H., Li J., Graphene oxide: Preparation, Functionalization, and Electrochemical Applications, Chemical Reviews, 112(11): 6027-6053 (2012).
[7] Zhu C., Han T. Y.-J., Duoss E. B., Golobic A. M., Kuntz J. D., Spadaccini C. M., Worsley M. A., Highly Compressible 3d Periodic Graphene Aerogel Microlattices, Nature Communications, 6: 6962 (2015).
[8] Xue Y., Wu B., Bao Q., Liu Y., Controllable Synthesis Of Doped Graphene And Its Applications, Small, 10(15): 2975-2991 (2014).
[9] Xu Y., Liu J., Graphene as Transparent Electrodes: Fabrication and New Emerging Applications, Small, 12(11): 1400-1419 (2016).
[10] Sun H., Xu Z., Gao C., Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels, Advanced Materials, 25(18): 2554-2560 (2013).
[11] Nardecchia S., Carriazo D., Ferrer M. L., Gutierrez M. C., del Monte F., Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene: Synthesis and Applications, Chemical Society Reviews, 42(2): 794-830 (2013).
[12] Mao J., Iocozzia J., Huang J., Meng K., Lai Y., Lin Z., Graphene Aerogels For Efficient Energy Storage and Conversion, Energy & Environmental Science, 11(4): 772-799 (2018).
[14] Yang M., Jeong J.-M., Huh Y. S., Choi B. G., High-Performance Supercapacitor Based on Three-Dimensional MoS2/Graphene Aerogel Composites, Composites Science and Technology, 121: 123-128 (2015).
[15] Yu H., Xin G., Ge X., Bulin C., Li R., Xing R., Zhang B., Porous Graphene-Polyaniline Nanoarrays Composite with Enhanced Interface Bonding and Electrochemical Performance, Composites Science and Technology, 154: 76-84 (2018).
[16] Pottathara Y. B., Bobnar V., Finšgar M., Grohens Y., Thomas S., Kokol V., Cellulose Nanofibrils-Reduced Graphene Oxide Xerogels And Cryogels for Dielectric and Electrochemical Storage Applications, Polymer, 147: 260-270 (2018).
[17] He C., Qiu S., Peng H., Zhang Q., Han X., Yang Y., Shi D., Xie X., Combination of 1d ni(oh)2 Nanobelts ad 2d Graphene Sheets to Fabricate 3d Composite Hydrogel Electrodes with Ultrahigh Capacitance and Superior Rate Capability, Composites Science and Technology, 167: 155-163 (2018).
[18] Zhang X., Sui Z., Xu B., Yue S., Luo Y., Zhan W., Liu B., Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electrochemical Power Sources, Journal of Materials Chemistry, 21(18): 6494-6497 (2011).
[19] Wu H., Wang Z.-M., Kumagai A., Endo T., Amphiphilic Cellulose Nanofiber-Interwoven Graphene Aerogel Monolith for Dyes and Silicon Oil Removal, Composites Science and Technology, 171: 190-198 (2019).
[20] Zhu L., Wang Y., Wang Y., You L., Shen X., Li S., An environmentally Friendly Carbon Aerogels Derived from Waste Pomelo Peels for the Removal of Organic Pollutants/Oils, Microporous and Mesoporous Materials, 241: 285-292 (2017).
[21] Szczęśniak B., Choma J., Jaroniec M., Effect of Graphene Oxide on the Adsorption Properties of Ordered Mesoporous Carbons Toward H2, C6H6, CH4 and CO2, Microporous and Mesoporous Materials, 261: 105-110 (2018).
[23] Raeisi N., Salman Tabrizi N., Sangpour P., Synthesis of Sodium Alginate-Derived Carbon Aerogel for Adsorptive Removal of Methylene Blue, Iranian Journal of Chemistry and Chemical Engineering (IJCCE),39(5): 157-168(2020).
[24] Moghaddas J., Amirkhani L., Jafarizadeh H., Optimization of Biodiesel Production Using Immobilized Candida Rugosa Lipase on Magnetic Fe3O4-Silica Aerogel, Iranian Journal of Chemistry and Chemical Engineering (IJCCE)38(2): 193-201 (2019).
[25] Worsley M. A., Pham T. T., Yan A., Shin S. J., Lee J. R. I., Bagge-Hansen M., Mickelson W., Zettl A., Synthesis and Characterization of Highly Crystalline Graphene Aerogels, ACS Nano, 8(10): 11013-11022 (2014).
[26] Sun F., Yang J., Zhang H., Yi L., Luo K., Zhao L., Wu J., Multi-Functional Composite Aerogels Enabled By Chemical Integration of Graphene Oxide and Waterborne Polyurethane Via a Facile and Green Method, Composites Science and Technology, 165: 175-182 (2018).
[27] Yue C., Feng J., Feng J., Jiang Y., Thermal Conductivity of Aerogel Composites with Oriented Nitrogen-Doped Graphene, Composites Science and Technology, 146: 198-202 (2017).
[28] Paredes J. I., Villar-Rodil S., Martínez-Alonso A., Tascón J. M. D., Graphene Oxide Dispersions in Organic Solvents, Langmuir, 24(19): 10560-10564 (2008).
[29] Whitby R. L. D., Chemical Control of Graphene Architecture: Tailoring Shape and Properties, ACS Nano, 8(10): 9733-9754 (2014).
[32] Fan L., Li X., Song X., Hu N., Xiong D., Koo A., Sun X., Promising Dual-Doped Graphene Aerogel/SnS2 Nanocrystal Building High-Performance Sodium-Ion Batteries, ACS Applied Materials & Interfaces, 10(3): 2637-2648 (2018).
[33] Benzigar M. R., Talapaneni S. N., Joseph S., Ramadass K., Singh G., Scaranto J., Ravon U., Al-Bahily K., Vinu A., Recent Advances in Functionalized Micro and Mesoporous Carbon Materials: Synthesis and Applications, Chemical Society Reviews, 47(8): 2680-2721 (2018).
[34] Qiu B., Xing M., Zhang J., Recent Advances in Three-Dimensional Graphene-Based Materials for Catalysis Applications, Chemical Society Reviews, 47(6): 2165-2216 (2018).
[35] Alhwaige A. A., Herbert M. M., Alhassan S. M., Ishida H., Qutubuddin S., Schiraldi D. A., Laponite/Multigraphene Hybrid-Reinforced Poly(Vinyl Alcohol) Aerogels, Polymer, 91: 180-186 (2016).
[36] Qiu B., Xing M., Zhang J., Mesoporous TiO2 Nanocrystals Grown in Situ on Graphene Aerogels for High Photocatalysis and Lithium-Ion Batteries, Journal of the American Chemical Society, 136(16): 5852-5855 (2014).
[37] Hosseini H., Kokabi M., Mousavi S. M., BC/rGO Conductive Nanocomposite Aerogel as a Strain Sensor, Polymer, 137: 82-96 (2018).
[38] Joshi M., Butola B. S., Polymeric Nanocomposites—Polyhedral Oligomeric Silsesquioxanes (Poss) as Hybrid Nanofiller, Journal of Macromolecular Science, Part C, 44(4): 389-410 (2004).
[39] Phillips S. H., Haddad T. S., Tomczak S. J., Developments in Nanoscience: Polyhedral Oligomeric Silsesquioxane (poss)-Polymers, Current Opinion in Solid State and Materials Science, 8(1): 21-29 (2004).
[40] Zhou H., Ye Q., Xu J., Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications, Materials Chemistry Frontiers, 1(2): 212-230 (2017).
[41] Pielichowski K., Njuguna J., Janowski B., Pielichowski J., Polyhedral Oligomeric Silsesquioxanes (poss)-Containing Nanohybrid Polymers, Supramolecular Polymers Polymeric Betains Oligomers, Springer Berlin Heidelberg, Berlin, Heidelberg, 225-296 (2006).
[42] Liao W.-H., Yang S.-Y., Hsiao S.-T., Wang Y.-S., Li S.-M., Ma C.-C. M., Tien H.-W., Zeng S.-J., Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites, ACS Applied Materials & Interfaces, 6(18):15802-15812 (2014).
[43] Hu L., Jiang P., Bian G., Huang M., Haryono A., Zhang P., Bao Y., Xia J., Effect of Octa(aminopropyl) Polyhedral Oligomeric Silsesquioxane (Oapposs) Functionalized Graphene Oxide on the Mechanical, Thermal, and Hydrophobic Properties of Waterborne Polyurethane Composites, Journal of Applied Polymer Science, 134(6): 44440 (2016).
[44] Xue Y., Liu Y., Lu F., Qu J., Chen H., Dai L., Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (Poss) for Multifunctional Applications, The Journal of Physical Chemistry Letters, 3(12): 1607-1612 (2012).
[46] Namvari M., Du L., Stadler F. J., Graphene Oxide-Based Silsesquioxane-Crosslinked Networks - Synthesis and Rheological Behavior, RSC Advances, 7(35): 21531-21540 (2017).
[47] Xu Y., Sheng K., Li C., Shi G., Self-Assembled Graphene Hydrogel Via a One-Step Hydrothermal process, ACS Nano, 4(7): 4324-4330 (2010).
[48] Ou J., Wang J., Liu S., Mu B., Ren J., Wang H.,  Yang S., Tribology Study of Reduced Graphene Oxide Sheets on Silicon Substrate Synthesized Via Covalent Assembly, Langmuir, 26(20): 15830-15836 (2010).
[49] Yang H., Li F., Shan C., Han D., Zhang Q., Niu L., Ivaska A., Covalent Functionalization of Chemically Converted Graphene Sheets Via Silane and Its Reinforcement, Journal of Materials Chemistry, 19(26): 4632-4638 (2009).
[50] Wang X., Song L., Yang H., Xing W., Kandola B., Hu Y., Simultaneous Reduction and Surface Functionalization of Graphene Oxide with Poss for Reducing Fire Hazards In Epoxy Composites, Journal of Materials Chemistry, 22(41): 22037-22043 (2012)
[51] Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S., The Chemistry of Graphene Oxide, Chemical Society Reviews, 39(1): 228-240 (2010).
[52] Yu W., Fu J., Dong X., Chen L., Shi L., A Graphene Hybrid Material Functionalized with Poss: Synthesis and Applications in Low-Dielectric Epoxy Composites, Composites Science and Technology, 92: 112-119 (2014).
[53] Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S., Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 45(7): 1558-1565 (2007).
[54] Worsley M. A., Kucheyev S. O., Mason H. E., Merrill M. D., Mayer B. P., Lewicki J., Valdez C. A., Suss M. E., Stadermann M., Pauzauskie P. J., Satcher J. H., Biener J., Baumann T. F., Mechanically Robust 3D Graphene Macro Assembly with High Surface Area, Chemical Communications, 48(67): 8428-8430 (2012).
[55] Si W., Wu X., Zhou J., Guo F., Zhuo S., Cui H., Xing W., Reduced Graphene Oxide Aerogel with High-Rate Supercapacitive Performance in Aqueous Electrolytes, Nanoscale Research Letters, 8(1): 247 (2013).
[57] Maleki H., Montes S., Hayati-Roodbari N., Putz F., Huesing N., Compressible, Thermally Insulating, and Fire Retardant Aerogels Through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach Towards 3D Printing of Aerogels, ACS Applied Materials & Interfaces, 10(26): 22718-22730 (2018).
[58] Maleki H., Durães L., Portugal A., Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties, The Journal of Physical Chemistry C, 119(14): 7689-7703 (2015).