Comparative Study of the Ethanolic and Aqueous Avicennia marina Mangrove Extracts on the Biosynthesis of AgCl@TiO2 Nanocomposite

Document Type : Research Article


Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, I.R. IRAN


The biosynthesis of nanomaterials is an important aspect of nanotechnology due to its cost-effective and eco-friendly procedure. The present study was carried out to fabricate AgCl@TiO2 nanocomposite using the aqueous and ethanolic leaf extracts of Avicennia marina mangrove plant as a reducing and stabilizing agent (RSA). The effect of aqueous and ethanolic leaf extracts with different concentrations on the biosynthesis of AgCl@TiO2 NanoParticles (NPs) was systematically studied by X-Ray Diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), UV-visible diffuse reflectance spectroscopy (UV-visible DRS), and Fourier Transform InfraRed (FT-IR) spectrometer. The results illustrated the successful synthesis of AgCl@TiO2 nanocomposite without any impurity phase using the aqueous extract. AgCl NPs were uniformly distributed on the surface of TiO2. The absorption intensity of AgCl@TiO2 with a band gap energy of 2.95 was improved both in the UV and VL region and displayed stronger absorption compared with pure TiO2. FT-IR analysis confirmed that the biosynthesized AgCl@TiO2 by using aqueous leaf extract was not just an easy physical mixture of Ag and TiO2 species but it was a molecular-level combining of Ti–O and Ag–O domains in the nanocomposite.


Main Subjects

[1] Hudlikar M., Joglekar S., Dhaygude M., Kodam K., Green Synthesis of TiO2 Nanoparticles by Using Aqueous Extract of Jatropha Curcas L. Latex, Materials Letters, 75: 196-199 (2012).
[2] Islam N. U., Jalil K., Shahid M., Rauf A., Muhammad N., Khan A., Shah M. R., Khan M. A., Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix Alba, Arabian Journal of Chemistry, (2015).
[3]Taghavi Fardood S., Ebadzadeh B., Ramazani A., Green Synthesis and Characterization of Ni-Cu-Mg Ferrite Nanoparticles in the Presence of Tragacanth Gum and Study of Their Catalytic Activity in the Synthesis of Hexanitrohexaazaisowurtzitane, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38: 21-29 (2019).
[4] Ghahremanzadeh R., Yazdi Samadi F., Yousefi M., Green Synthesis of Gold Nanoparticles Using Three Medicinal Plant Extracts as Efficient Reducing Agents, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38: 1-10 (2019).
[6] Nabikhan A., Kandasamy K., Raj A., Alikunhi N. M., Synthesis of Antimicrobial Silver Nanoparticles by Callus and Leaf Extracts from Saltmarsh Plant, Sesuvium portulacastrum L, Colloids and Surfaces B: Biointerfaces, 79: 488-493 (2010).
[7] Santhoshkumar T., Rahuman A. A., Rajakumar G., Marimuthu S., Bagavan A., Jayaseelan C., Zahir A. A., Elango G., Kamaraj C., Synthesis of Silver Nanoparticles Using Nelumbo Nucifera Leaf Extract and Its Larvicidal Activity Against Malaria and Filariasis Vectors, Parasitology Research, 108: 693-702 (2011).
[10] Ghasemi Z., Younesi H., Zinatizadeh A. A., Kinetics and thermodynamics of Photocatalytic Degradation of Organic Pollutants in Petroleum Refinery Wastewater over Nano-TiO2 Supported on Fe-ZSM-5, Journal of the Taiwan Institute of Chemical Engineers, 65: 357-366 (2016).
[11] Zhang J., Liu X., Suo X., Li P., Liu B., Shi H., Facile Synthesis of Ag/AgCl/TiO2 Plasmonic Photocatalyst with Efficiently Antibacterial Activity, Materials Letters, 198: 164-167 (2017).
[12] Zhao B., Chen Y.-W., Ag/TiO2 sol Prepared by a Sol–Gel Method and Its Photocatalytic Activity, Journal of Physics and Chemistry of Solids, 72: 1312-1318 (2011).
[13] Aghajari N., Ghasemi Z., Younesi H., Bahramifar N., Synthesis, Characterization and Photocatalytic Application of Ag-Doped Fe-ZSM-5@TiO2 Nanocomposite for Degradation of Reactive Red 195 (RR 195) in Aqueous Environment under Sunlight Irradiation, Journal of Environmental Health Science and Engineering, 17: 219-232 (2019).
[14] Moradi N., Amin M. M., Fatehizadeh A., Ghasemi Z., Degradation of UV-Filter Benzophenon-3 in Aqueous Solution Using TiO2 Coated on Quartz Tubes, Journal of Environmental Health Science and Engineering, 16: 213-228 (2018).
[15] Marami M. B., Farahmandjou M., Khoshnevisan B., Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals, Journal of Electronic Materials, 47: 3741-3748 (2018).
[16] Khoshnevisan B., Marami M. B., Farahmandjou M., Fe3+-Doped Anatase TiO2 Study Prepared by New Sol-Gel Precursors, Chinese Physics Letters, 35: 027501 (2018).
[17] Farahmandjou M., Fabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor, Physical Chemistry Research, 3: 293-298 (2015).
[18] Jafari A., Khademi S., Farahmandjou M., Nano-Crystalline Ce-doped TiO2 Powders: Sol-Gel Synthesis and Optoelectronic Properties, Materials Research Express, 5: 095008 (2018).
[19] Ramazani M., Farahmandjou M., Firoozabadi T.P., Effect of Nitric Acid on Particle Morphology of the Nano-TiO2, International Journal of Nanoscience and Nanotechnology, 11: 115-122 (2015).
[20] Abdi V., Sourinejad I., Yousefzadi M., Ghasemi Z., Mangrove-Mediated Synthesis of Silver Nanoparticles Using Native Avicennia Marina Plant Extract from Southern Iran, Chemical Engineering Communications, 205: 1069-1076 (2018).
[21] Zhang C., Hua H., Liu J., Han X., Liu Q., Wei Z., Shao C., Hu C., Enhanced Photocatalytic Activity of Nanoparticle-Aggregated Ag–AgX(X = Cl, Br)@TiO2 Microspheres Under Visible Light, Nano-Micro Letters, 9: 49 (2017).
[22] Bao N., Miao X., Hu X., Zhang Q., Jie X., Zheng X., Novel Synthesis of Plasmonic Ag/AgCl@TiO2 Continues Fibers with Enhanced Broadband Photocatalytic Performance, Catalysts, 7: 117- (2017).
[23] Zhou J., Cheng Y., Yu J., Preparation and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanocomposite Thin Films, Journal of Photochemistry and Photobiology A: Chemistry, 223: 82-87 (2011). 
[24] Yu J., Dai G., Huang B., Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays, The Journal of Physical Chemistry C, 113: 16394-16401 (2009).
[25] Liu S., Zhu D., Zhu J., Yang Q., Wu H., Preparation of Ag@AgCl-Doped TiO2/Sepiolite and its Photocatalytic Mechanism Under Visible Light, Journal of Environmental Sciences, 60: 43-52 (2017).
[26] Suárez A., Ulate G., Ciccio J., Cardiovascular Effects of Ethanolic and Aqueous Extracts of Pimenta Dioica in Sprague-Dawley Rats, J. Ethnopharmacol., 55: 107-111 (1997).
[27] Kannaiyan M., Manuel V.N., Raja V., Thambidurai P., Mickymaray S., Nooruddin T., Antimicrobial Activity of the Ethanolic and Aqueous Extracts of Salacia Chinensis Linn. Against Human Pathogens, Asian Pacific Journal of Tropical Disease, 2: S416-S420 (2012).
[28] Ju J. B., Kim J. S., Choi C. W., Lee H. K., Oh T.-K., Kim S. C., Comparison Between Ethanolic and Aqueous Extracts from Chinese Juniper Berries for Hypoglycaemic and Hypolipidemic Effects in Alloxan-Induced Diabetic Rats, Journal of Ethnopharmacology, 115: 110-115 (2008).
[29] Pilarski R., Zieliński H., Ciesiołka D., Gulewicz K., Antioxidant Activity of Ethanolic and Aqueous Extracts of Uncaria Tomentosa (Willd.) DC, Journal of Ethnopharmacology, 104: 18-23 (2006).
[30] Arias M.E., Gomez J.D., Cudmani N.M., Vattuone M.A., Isla M. I., Antibacterial Activity of Ethanolic and Aqueous Extracts of Acacia Aroma Gill. ex Hook et Arn, Life Sciences, 75: 191-202 (2004).
[31] Aguwa C.N., Lawal A.M., Pharmacologic Studies on the Active Principles of Calliandra Portoricensis Leaf Extracts, Journal of Ethnopharmacology, 22: 63-71 (1988).
[32] Hosseinzadeh H., Tafaghodi M., Mosavi M. J., Taghiabadi E., Effect of Aqueous and Ethanolic Extracts of Nigella sativa Seeds on Milk Production in Rats, Journal of Acupuncture and Meridian Studies, 6: 18-23 (2013).
[33] Basiri S., Mehdinia A., Jabbari A., Biologically Green Synthesized Silver Nanoparticles as a Facile and Rapid Label-Free Colorimetric Probe for Determination of Cu2+ in Water Samples, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 171: 297-304 (2017).
[34] Edayadulla N., Basavegowda N., Lee Y.R., Green Synthesis and Characterization of Palladium Nanoparticles and Their Catalytic Performance for the Efficient Synthesis of Biologically Interesting Di(Indolyl)Indolin-2-Ones, Journal of Industrial
and Engineering Chemistry
, 21: 1365-1372 (2015).
[35] Jegadeeswaran P., Rajiv P., Vanathi P., Rajeshwari S., Venckatesh R., A Novel Green Technology: Synthesis and Characterization of Ag/TiO2 Nanocomposites Using Padina Ttrastromatica (seaweed) Extract, Materials Letters, 166: 137-139 (2016).
[36] Prakash P., Gnanaprakasam P., Emmanuel R., Arokiyaraj S., Saravanan M., Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops Elengi, Linn. for Enhanced Antibacterial Activity Against Multi Drug Resistant Clinical Isolates, Colloids and Surfaces B: Biointerfaces, 108: 255-259 (2013).
[37] Rasaee I., Ghannadnia M., Baghshahi S., Biosynthesis of Silver Nanoparticles Using Leaf Extract of Satureja Hortensis Treated with Nacl and its Antibacterial Properties, Microporous and Mesoporous Materials, 264: 240-247 (2018).
[38] Saravanakumar K., Chelliah R., Shanmugam S., Varukattu N.B., Oh D.-H., Kathiresan K., Wang M.H., Green Synthesis and Characterization of Biologically Active Nanosilver From Seed Extract of Gardenia Jasminoides Ellis, Journal of Photochemistry and Photobiology B: Biology, 185: 126-135 (2018).
[39] Ederley Vélez, Gloria Campillo, Gladis Morales, César Hincapié, Jaime Osorio, Arnache3 O., Silver Nanoparticles Obtained by Aqueous or Ethanolic Aloe Vera Extracts: An Assessment of the Antibacterial Activity and Mercury Removal Capability, Journal of Nanomaterials, 2018: -  (2018).
[40]  Rajakumar G., Rahuman A.A., Roopan S.M., Khanna V.G., Elango G., Kamaraj C., Zahir A.A., Velayutham K., Fungus-Mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity Against Pathogenic Bacteria, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91: 23-29 (2012).
[41] Velayutham K., Rahuman A. A., Rajakumar G., Santhoshkumar T., Marimuthu S., Jayaseelan C., Bagavan A., Kirthi A. V., Kamaraj C., Zahir A. A., Elango G., Evaluation of Catharanthus Roseus Leaf Extract-Mediated Biosynthesis of Titanium Dioxide Nanoparticles Against Hippobosca Maculata and Bovicola Ovis, Parasitology Research, 111: 2329-2337 (2012).
[42] Santhoshkumar T., Rahuman A. A., Jayaseelan C., Rajakumar G., Marimuthu S., Kirthi A. V., Velayutham K., Thomas J., Venkatesan J.,
Kim S.-K., Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium Guajava Extract and Its Antibacterial and Antioxidant Properties, Asian Pacific Journal of Tropical Medicine, 7: 968-976 (2014).
[43] Naresh Kumar Reddy P., Shaik D. P. M. D., Ganesh V., Nagamalleswari D., Thyagarajan K., Vishnu Prasanth P., Structural, Optical And Electrochemical Properties of TiO2 Nanoparticles Synthesized Using Medicinal Plant Leaf Extract, Ceramics International, 45: 16251-16260 (2019).
[44] Subhapriya S., Gomathipriya P., Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Trigonella Foenum-Graecum Extract and Its Antimicrobial properties, Microbial Pathogenesis., 116: 215-220 (2018).
[45] Baek I.C., Vithal M., Chang J.A., Yum J.-H., Nazeeruddin M.K., Grätzel M., Chung Y.-C., Seok S.I., Facile Preparation of Large Aspect Ratio Ellipsoidal Anatase TiO2 Nanoparticles and Their Application to Dye-Sensitized Solar Cell, Electrochemistry Communications, 11: 909-912 (2009).
[47] Keshmiri M., Troczynski T., Synthesis of Narrow Size distribution Sub-Micron TiO2 Spheres, Journal of Non-Crystalline Solids, 311: 89-92 (2002).
[48] Sugimoto T., Underlying Mechanisms in Size Control of Uniform Nanoparticles, Journal of Colloid and Interface Science, 309: 106-118 (2007).
[49] Sugimoto T., Zhou X., Muramatsu A., Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel–Sol Method: 3. Formation Process and Size Control, Journal of Colloid and Interface Science, 259: 43-52 (2003).
[50] Hoffmann M. R., Martin S. T., Choi W., Bahnemann D.W., Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95: 69-96 (1995).
[51] Demirci S., Dikici T., Yurddaskal M., Gultekin S., Toparli M., Celik E., Synthesis and Characterization of Ag Doped TiO2 Heterojunction Films and Their Photocatalytic Performances, Applied Surface Science, 390: 591-601 (2016).
[53] Jyoti K., Baunthiyal M., Singh A., Characterization of Silver Nanoparticles Synthesized Using Urtica Dioica Linn. Leaves and Their Synergistic Effects with Antibiotics, Journal of Radiation Research and Applied Sciences, 9: 217-227 (2016).
[54] Suwarnkar M. B., Dhabbe R. S., Kadam A. N., Garadkar K. M., Enhanced Photocatalytic Activity of Ag-Doped TiO2 Nanoparticles Synthesized by a Microwave-Assisted Method, Ceramics International, 40: 5489-5496 (2014).
[55] Vivek R., Thangam R., Muthuchelian K., Gunasekaran P., Kaveri K., Kannan S., Green Biosynthesis of Silver Nanoparticles from Annona Squamosa Leaf Extract and Its in Vitro Cytotoxic Effect on MCF-7 Cells, Process Biochemistry, 47: 2405-2410 (2012).
[57] Niraimathi K. L., Sudha V., Lavanya R., Brindha P., Biosynthesis of Silver Nanoparticles
Using Alternanthera Sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities
, Colloids and Surfaces B: Biointerfaces, 102: 288-291 (2013).
[58] Adamczyk A., Rokita M., The Structural Studies of Ag Containing TiO2–SiO2 Gels and Thin Films Deposited on Steel, Journal of Molecular Structure, 1114: 171-180 (2016).
[59] Atchudan R., Edison T. N. J. I., Perumal S., Vinodh R., Lee Y. R., In-Situ Green synthesis of Nitrogen-doped Carbon dots for Bioimaging and TiO2 Nanoparticles@Nitrogen-Doped Carbon Composite for Photocatalytic Degradation of Organic Pollutants, Journal of Alloys and Compounds, 766: 12-24 (2018).