Impact of Silver Ions Doping and Calcination on the Physicochemical Characteristics of TiO2 Nanoparticles with Photocatalytic and Regeneration Potential

Document Type : Research Article

Authors

1 School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, MALAYSIA

2 Department of Chemistry, University of Buner, Buner, PAKISTAN

3 Department of Chemistry, The University of Lahore, Sargodha Campus, PAKISTAN

Abstract

Visible light-driven Ag+ doped TiO2 photocatalysts were successfully prepared with modified low-cost Liquid Impregnation (LI) method yielding up to 95 % product. The native and newly synthesized photocatalysts were calcined at various temperatures and characterized using diffused reflectance spectroscopy (UV/Vis-DRS), XRD, XPS, TEM, EDX, XRF, and pHPZC analyses. The XRD results for all samples revealed that the anatase phase was dominant at all calcination temperatures. The Ag+ doping reduced the bandgap energy to 2.88 eV, which significantly enhanced the photocatalytic efficiency towards Methylene Blue (MB) under compact fluorescent light. The photocatalytic efficacy of the nano-catalysts was also tested using a binary solution containing a model dye (MB) and Cd2+ under ordinary compact fluorescent light. The presence of competitive ions i.e. Cd2+ increased the MB degradation up to 4 folds under the ambient conditions whereby the maximum amount of MB adsorbed by nano-catalysts reached 46 mg/g. The high-temperature combustion method was found more effective for the regeneration of TiO2 photocatalysts compared to the chemical regeneration. The reusable character of the regenerated samples posed a significant impact on the current work to be applied in wastewater treatment in bulk.

Keywords

Main Subjects


[2] Wu, J., Doan, H., Upreti, S., Decolorization of Aqueous Textile Reactive Dye by Ozone, Chem. Eng. J., 142: 156-160 (2008).
[5] EPA. 2011. “Edition of the Drinking Water Standards and Health Advisories.” EPA 820-R-11-002, Office of Water, Washington (DC): The United States Environmental Protection Agency; (2011).
[6] Huang, H.H., Tseng, D.H., Juang, L.C., Titanium Dioxide Mediated Photocatalytic Degradation of Monochlorobenzene in Aqueous Phase, Chemosphere, 71: 398-405 (2008).
[7] Thiruvenkatachari, R., Vigneswaran, S., Moon, I.S., A Review on UV/TiO2 Photocatalytic Oxidation Process, Kor. J. Chem. Eng., 25: 64-72 (2008). 
[8] Janitabar Darzi, S., Abdolmohammadi, S., Latifi, M., Green Removal of Toxic Th(IV) by Amino-Functionalized Mesoporous TiO2-SiO2 Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 101-202 (2020).
[9] Saqib, N.U., Adnan, R., Shah, I., Zeolite Supported TiO2 with Enhanced Degradation Efficiency for Organic Dye Under Household Compact Fluorescent Light, Mate. Res. Express, 6(9): 095506 (2019).
[10] Chan S.H.S., Yeong W.T., Juan J.C., Teh C.Y., Recent Developments of Metal Oxide Semiconductors as Photocatalysts in Advanced Oxidation Processes (AOPs) for Treatment of Dye Waste‐Water, J. Chem. Technol. Biotechnol., 86: 1130-1158 (2011).
[11] Ramacharyulu P., Kumar, J.P., Prasad, J.K., Sreedhar, B., Sulphur Doped Nano TiO2: Synthesis, Characterization and Photocatalytic Degradation of a Toxic Chemical in Presence of Sunlight, Mater. Chem. Phys, 148: 692-698 (2014).
[12]   Vasili R., Stojadinovi S., Radi N., Stefano, P., Dohcevic-Mitrovi Z., Grbi B., One-Step Preparation and Photocatalytic Performance of Vanadium Doped TiO2 Coatings, Mater. Chem. Phys., 151, 337-344 (2015).
[13] Palukuru P.S., Devangam A. V., Behara D.K., N, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye , Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 171-180 (2020).
[14] Saqib N.U., Adnan R., Shah I., A Mini-Review on Rare Earth Metal-Doped TiO2 for Photocatalytic Remediation of Wastewater, Environ. Sci. Pollut. Res., 23(16): 15941-15951 (2016).
[15] Chowdhury, P., Moreira, J., Gomaa, H., Ray, A.K., Visible-Solar-Light-Driven Photocatalytic Degradation of Phenol with Dye-Sensitized TiO2: Parametric and Kinetic Study, Ind. Eng. Chem. Res., 51: 4523-4532 (2012).
[16] Daghrir, R., Drogui, P., Robert, D., Modified TiO2 for Environmental Photocatalytic Applications:  A Review, Ind. Eng. Chem. Res, 51: 3581-3599 (2013).
[17] Janusz, W., Matysek, M., Coadsorption of Cd (II) and Oxalate Ions at the TiO2/Electrolyte Solution Interface, J. Colloid Interface Sci., 296: 22-29 (2006).
[18] Saqib, N.U., Adnan, R., Shah, I., Modifications of Pure and Ag Doped TiO2 by Pre-Sulphated and Calcination Temperature Treatments, Res. Chem. Intermed, 43(11): 6571-6588 (2017).
[19] Liu G.L., Zhu D.W., Liao S.J., Ren L.Y., Cui J.Z., Zhou W.B., Solid-Phase Photocatalytic Degradation of Polyethylene–Goethite Composite Film under UV-Light Irradiation, J. Hazard. Mater, 172: 1424-1429 (2009).
[20] Gaya U.I., Comparative Analysis of ZnO-Catalyzed Photo-Oxidation of p-Chlorophenols, Chem. Eur. J., 2: 163-167 (2011).
[21] Yang Y., Chun Y., Sheng G., Huang M., pH-Dependence of Pesticide Adsorption by Wheat-Residue-Derived Black Carbon, Langmuir, 20: 6736-6741 (2004).
[22] Wang S., Li H., Xie S., Liu S., Xu L., Physical and Chemical Regeneration of Zeolitic Adsorbents for Dye Removal in Wastewater Treatment, Chemosphere, 65: 82-87 (2006).
[23] Uzunova-Bujnova M., Todorovska R., Dimitrov D., Todorovsky D., Lanthanide-Doped Titanium Dioxide Layers as Photocatalysts, Appl. Surf. Sci., 254(22): 7296-302 (2008).
[24] Szabó-Bárdos E., Czili H., Horváth A., Photocatalytic Oxidation of Oxalic Acid Enhanced by Silver Deposition on a TiO2 Surface, J. Photochem. Photobiol. A: Chemistry, 154(2): 195-201 (2003).
[26] Ahmad A., Thiel J., Shah S.I., Structural Effects of Niobium and Silver Doping on Titanium Dioxide Nanoparticles, J. Phys., Conference Series, 61: 11 (2007).
[27] Chao H., Yun Y., Xingfang H., Larbot A., Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-Gel Titania Powder, J. Eur. Ceram. Soc, 23(9): 1457-1464 (2003).
[28] Demirci S., T. Dikici, M., Yurddaskal S., Gultekin M., Toparli., Celik E., Synthesis and Characterization of Ag Doped TiO2 Heterojunction Films and their Photocatalytic Performances, App. Surf. Sci, 390: 591-601 (2016).
[29] Feng N., Wang Q., Zheng A., Zhang Z., Fan J., Liu S.B., Amoureux J.P., Deng F., Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO2 under Solar-Light Irradiation with XPS, Solid-State NMR, and DFT Calculations, J. American Chem. Society, 135(4): 1607-1616 (2013).
[30] Taing J., Cheng M.H., Hemminger J.C., Photodeposition of Ag or Pt onto TiO2 Nanoparticles Decorated on Step Edges of HOPG, ACS Nano, 5(8): 6325-6333 (2011).
[31] Hotze E.M., Phenrat T., Lowry G.V., Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment, J. Environ. Qual, 39: 1909-1924 (2010).
[32] Lin D., Tin X., Wu F., Xing B., Fate and Transport of Engineered Nanomaterials in the Environment, J. Environ. Qual, 39: 1896-1908 (2010).
[33] Dutta P.K., Ray A.K., Sharma V.K., Millero F.J., Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions, J. Colloid. Interface. Sci., 278: p. 270-275 (2004).
[34] Aygün A., Yenisoy-Karakaş S., Duman I., Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties, Micropor. Mesopor. Mater, 66(2-3): 189-195 (2003).
[35] Wang S., Ma Q., Zhu Z., Characteristics of Coal Fly Ash and Adsorption Application, Fuel, 87(15): 3469-3473 (2008).
[36] Batzias, F., Sidiras, D., Dye Adsorption by Calcium Chloride Treated Beech Sawdust In Batch and Fixed-Bed Systems, J. Hazard. Mater, 114(1): 167-174 (2004).
[37] Faghihian, H., Bahranifard, A., Application of TiO2–Zeolite as Photocatalyst for Photodegradation of Some Organic Pollutants, Iranian J. Catal, 1(1): p. 45-50 (2011).
[38] Ragupathy, S., Raghu, K., Prabu, P., Synthesis and Characterization of TiO2 Loaded Cashew Nut Shell Activated Carbon and Photocatalytic Activity on BG and MB Dyes Under Sunlight Radiation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138: 314-320 (2015).
[39] Maicu M., Hidalgo M.C., Colon G., Navio J.A., Comparative Study of the Photodeposition of Pt, Au and Pd on Pre-Slphated TiO2 for the Photocatalytic Decomposition of Phenol, J. Photochem. Photobiol. A: Chem., 217: 275-283 (2011).