Optimal Synthesis of Aromatic Carbonyl Compounds by Electrooxidation of Soda Lignins on Stainless steel and TiMMO Anodes

Document Type : Research Article

Authors

Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, INDIA

Abstract

Electrooxidation (EO) studies were conducted on Wheat Straw Soda Lignin (WSSL), and bagasse soda lignin (BSL) for the synthesis of aromatic carbonyl compounds (COarom). Stainless Steel (SS), and titanium mixed metal oxide (TiMMO) anodes were used for the purpose. Experiments were designed according to Box Behnken Design (BBD), and Central Composite Design (CCD). The process parameters, namely EO current density, and EO time, were optimized using Response Surface Methodology (RSM) to obtain the maximum yields of different COarom, individually as well as collectively. A maximum of 30% cumulative yield of COarom, based on the total amount of lignin, could be obtained from BSL under optimized conditions of 2.24 mA/cm2 EO current density, and 18 h EO time using SS anode. Among individual compounds, vanillin was produced with the highest yield of 20% of starting BSL with EO current density, and EO time optimized to 5.87 mA/cm2, and 18 h, respectively. In all cases, SS anode fares better than TiMMO anode.

Keywords

Main Subjects


[1] Ghatak H.R., Biorefineries from the Perspective of Sustainability: Feedstocks, Products, and Processes, Renewable Sustainable Energy Rev., 15(8): 4042-4052 (2011).
[2] Singh S., Ghatak H.R., Vanillin Formation by Electrooxidation of Lignin on Stainless Steel Anode: Kinetics and By-Products, J. Wood Chem. Technol., 37(6): 407-422 (2017).
[3] Tejado A., Pena C., Labidi J., Echeverria J.M., Mondragon I., Physico-chemical Characterization of Lignins from Different Sources for Use in Phenol–Formaldehyde Resin Synthesis, Bioresour. Technol., 98(8): 1655-1663 (2007).
[4] Zhu W., Westman G., Theliander H., Investigation and Characterization of Lignin Precipitation in the Lignoboost Process, J. Wood Chem. Technol., 34(2): 77-97 (2014).
[5] Aso T., Koda K., Kubo S., Yamada T., Nakajima I., Uraki Y., Preparation of Novel Lignin-Based Cement Dispersants from Isolated Lignins, J. Wood Chem. Technol., 33(4): 286-298 (2013).
[7] da Silva E.B., Zabkova M., Araújo J.D., Cateto C.A., Barreiro M.F., Belgacem M. N., Rodrigues A.E., An Integrated Process to Produce Vanillin And Lignin-Based Polyurethanes from Kraft Lignin, Chem. Eng. Res. Des., 87(9):1276-1292 (2009).
[8] Xiao C., Bolton R., Pan W.L., Lignin from Rice Straw Kraft Pulping: Effects on Soil Aggregation and Chemical Properties, Bioresour. Technol., 98(7): 1482-1488 (2007).
[9] Suparno O., Covington A.D., Phillips P.S., Evans C.S., An Innovative New Application for Waste Phenolic Compounds: Use of Kraft Lignin And Naphthols In Leather Tanning, Resour., Conserv. Recycl., 45(2): 114-127 (2005).
[10] Kadla J.F., Kubo S., Venditti R.A., Gilbert R.D., Compere A.L., Griffith W., Lignin-Based Carbon Fibers for Composite Fiber Applications, Carbon, 40(15): 2913-2920 (2002).
[11] Hayashi J.I., Muroyama K., Gomes V.G., Watkinson A.P., Fractal Dimensions of Activated Carbons Prepared from Llignin by Chemical Activation, Carbon, 40(4): 630-632 (2002).
[12] Fierro V., Torné-Fernández V., Celzard A., Kraft Lignin as a Precursor for Microporous Activated Carbons Prepared by Impregnation with Ortho-Phosphoric Acid: Synthesis and Textural Characterization, Microporous Mesoporous Mater., 92(1-3):2 43-250 (2006).
[13] Pouteau C., Dole P., Cathala B., Averous L., Boquillon N., Antioxidant Properties of Lignin in PolypropylenePolym. Degrad. Stab., 81(1): 9-18 (2003).
[14] Pucciariello R., Villani V., Bonini C., D'Auria M., Vetere T., Physical Properties of Straw Lignin- Based Polymer Blends, Polymer, 45(12):4159-4169 (2004).
[15] Anglès M.N., Reguant J., Garcia-Valls R., Salvado J., Characteristics of Lignin Obtained from Steam-Exploded Softwood with Soda/Anthraquinone Pulping, Wood Sci. Technol., 37(3-4): 309-320 (2003).
[16] Zheng Y., Chen D., Zhu X., Aromatic Hydrocarbon Production by the Online Catalytic Cracking of Lignin Fast Pyrolysis Vapors Using Mo2N/γ-Al2O3, J. Anal. Appl. Pyrolysis, 104: 514-520 (2013).
[17] Joffres B., Nguyen M.T., Laurenti D., Lorentz C., Souchon V., Charon N., Geantet C., Lignin Hydroconversion on MoS2-Based Supported Catalyst: Comprehensive Analysis of Products and Reaction Scheme, Appl. Catal., B, 184: 153-162 (2016).
[18] Stefanidis S.D., Karakoulia S.A., Kalogiannis K.G., Iliopoulou E.F., Delimitis A., Yiannoulakis H., Triantafyllidis K.S., Natural Magnesium Oxide (MgO) Catalysts: A Cost-Effective Sustainable Alternative to Acid Zeolites for the in Situ Upgrading of Biomass Fast Pyrolysis Oil, Appl. Catal., B, 196:155-173 (2016).
[19] Liang S., Wan C., Biorefinery Lignin to Renewable Chemicals Via Sequential Fractionation and Depolymerisation, Waste Biomass Valorization, 8(2): 393-400 (2017).
[20] Villar J.C., Caperos A., Garcia-Ochoa F., Oxidation of Hardwood Kraft-Lignin to Phenolic Derivatives. Nitrobenzene and Copper Oxide as Oxidants, J. Wood Chem. Technol., 17(3): 259-285 (1997).
[21] Mathias A.L., Rodrigues A.E., Production of Vanillin by Oxidation of Pine Kraft Lignins with Oxygen, Holzforschung, 49(3): 273-278 (1995).
[22] Araújo J.D., Grande C.A., Rodrigues A.E., Vanillin Production from Lignin Oxidation in a Batch Reactor, Chem. Eng. Res. Des., 88(8):1024-1032 (2010).
[23] Costa C.A.E., Pinto P.C.R., Rodrigues A.E., Radar Tool for Lignin Classification on the Perspective of its Valorization, Ind. Eng. Chem. Res., 54(31): 7580-7590 (2015).
[24] Pinto P.C.R., Costa C.A.E., Rodrigues A.E., Oxidation of Lignin from Eucalyptus Globulus Pulping Liquors to Produce Syringaldehyde and Vanillin, Ind. Eng. Chem. Res., 52(12): 4421-4428 (2013).
[25] Mota M.I.F., Pinto P.C.R., Loureiro J.M., Rodrigues A.E., Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes, Sep. Purif. Rev., 45(3):227-259 (2016).
[26] Mota M.I.F., Pinto P.C.R., Loureiro J.M., Rodrigues A.E., Successful Recovery and Concentration of Vanillin and Syringaldehyde onto a Polymeric Adsorbent with Ethanol/Water Solution Chem. Eng. J. (Amsterdam, Neth.), 294:73-82 (2016).
[27] Villar J.C., Caperos A., Garcia-Ochoa F., Oxidation of Hardwood Kraft-Lignin to Phenolic Derivatives with Oxygen as Oxidant, Wood Sci. Technol., 35(3): 245-255 (2001).
[28] Sales F.G., Abreu C.A.M., Pereira J.A.F.R., Catalytic Wet-Air Oxidation of Lignin in a Three-Phase Reactor with Aromatic Aldehyde Production, Braz. J. Chem. Eng., 21(2): 211-218 (2004).
[29] Shiraishi T., Takano T., Kamitakahara H., Nakatsubo F., Studies on Electrooxidation of Lignin and Lignin Model Compounds. Part 1: Direct Electrooxidation of Non-Phenolic Lignin Model Compounds, Holzforschung, 66(3): 303-309 (2012).
[31] Sannami Y., Kamitakahara H., Takano T., TEMPO-Mediated Electro-Oxidation Reactions of Non-Phenolic β-O-4-type Lignin Model Compounds, Holzforschung, 71(2):109-117 (2017).
[32] Zhang Y.M., Peng Y., Yin X.L., Liu Z.H., Li G., Degradation of Lignin to BHT by Electrochemical Catalysis on Pb/PbO2 Anode in Alkaline Solution, J. Chem. Technol. Biotechnol., 89(12): 1954-1960 (2014).
[34] Schmitt D., Regenbrecht C., Schubert M., Schollmeyer D., Waldvogel S.R., Treatment of Black Liquor (BL) by Adsorption on AE Resins and a Subsequent Electrochemical Degradation of BL to Obtain Vanillin, Holzforschung, 71(1):35-41 (2017).
[35] Abbasi S., Ekrami-Kakhki M.S., Tahari M., Modeling and Predicting the Photodecomposition o Methylene Blue via ZnO–SnO2 Hybrids Using Design of Experiments (DOE), J. Mater. Sci.: Mater. Electron., 28(20): 15306-15312 (2017).
[36] Abbasi, S., Hasanpour, M., Ekrami-Kakhki, M.-S., Removal Efficiency Optimization of Organic Pollutant (Methylene Blue) with Modified Multi-Walled Carbon Nanotubes Using Design of Experiments (DOE), J. Mater. Sci.: Mater. Electron., 28(13): 9900–9910 (2017). 
[38] Ekrami-Kakhki, M.S., Abbasi, S. and Farzaneh, N., Design of Experiments Methodology to Investigate Methanol Electrooxidation on Pt Nanoparticles Supported Novel Functionalized Reduced Graphene Oxide, Anal. Bioanal. Electrochem., 10(12): 1548-1561 (2018).
[39] Hinkelmann K., “Design and Analysis of Experiments, Volume 3: Special Designs and Applications”, John Wiley & Sons, New York (2011).
[40] Rajkumar K., Muthukumar M., Optimization of Electro-Oxidation Process for the Treatment of Reactive Orange 107 Using Response Surface Methodology, Environ. Sci. Pollut. Res., 19(1):148-160 (2012).
[41] Aleboyeh A., Daneshvar N., Kasiri M.B., Optimization of CI Acid Red 14 Azo Dye Removal by Electrocoagulation Batch Process with Response Surface Methodology, Chem. Eng. Processing: Process Intensif., 47(5): 827-832 (2008).
[42] Körbahti B.K., Response Surface Optimization of Electrochemical Treatment of Textile Dye Wastewater, J. Hazard. Mater., 145(1-2): 277-286 (2007).
[44] Abbasi S., Ahmadpoor F., Imani M., Ekrami-Kakhki M.-S., Synthesis of Magnetic Fe3O4@ZnO@graphene Oxide Nanocomposite for Photodegradation of Organic Dye Pollutant, Int. J. Environ. Anal. Chem., 1-16 (2019).
[45] Abbasi, S., Adsorption of Dye Organic Pollutant Using Magnetic ZnO Embedded on the Surface of Graphene Oxide, J. Inorg. Organomet. Polym. Mater., 1-11 (2019).
[48] Reichert E., Wintringer R., Volmer D.A., Hempelmann R., Electro-Catalytic Oxidative Cleavage of Lignin in a Protic Ionic Liquid, Phys. Chem. Chem. Phys., 14(15): 5214-5221 (2012).