The Performance Enhancement of Paraffin as a PCM During the Solidification Process: Utilization of Graphene and Metal Oxide Nanoparticles

Document Type : Research Article

Authors

1 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

2 Energy Management Research Center (EMRC), University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

3 Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz, I.R. IRAN

Abstract

The substitution of fossil fuels with renewable energies is a meaningful way to mitigate global warming and air pollution. Phase change materials could store and release a high amount of energy. The solidification phenomenon is an essential factor that should be considered for choosing Phase Change Materials (PCMs). In this work, attempts have been made to improve the thermophysical properties of paraffin as a PCM during the solidification process. 1-3 wt.% of Al2O3, CuO, TiO2, and graphene nanoparticles were used during the solidification process. No reports had yet been made on the effect of graphene nanoparticles versus metal oxide nanoparticles on the thermal properties of Nanoparticle-Enhanced Phase Change Materials (NEPCMs). The DSC, TGA, SEM, and FT-IR analyses were done to investigate the transition temperature, nanoparticle distribution, and nanocomposites morphology, respectively. It was seen that the addition of nanoparticles could effectively increase the thermal conductivities of paraffin. The maximum and minimum increases were in thermal conductivities were recorded in samples with 3wt.% of graphene and 1wt.% of TiO2. The results showed that selecting suitable nanocomposites depended on various parameters, such as the type of nanoparticles and the weight percentage of nanoparticles. The PCM nanocomposites can be used to control the thermal management of different systems. The results can be applied in thermal design and management concepts, especially in the solidification process.

Keywords

Main Subjects


[1] Sharma A., Tyagi VV., Chen CR., Buddhi D., Review on Thermal Energy Storage with Phase Change Materials and Applications, Renewable Sustainable Energy Rev., 13: 318-345 (2009).
[2] Sakkaki M., Sadegh Moghanlou F., Parvizi S, Baghbanijavid H., Babapoor A., Shahedi Asl M., Phase Change Materials as Quenching Media for Heat Treatment of 42CrMo4 Steels, J. Central South Univ., 27(3): 752-761 (2019).
[3] Haghighi A., Babapoor A., Azizi MM., Javanshir Z, Ghasemzadeh H., Optimization of The Thermal Performance of PCM Nanocomposites, J. Energy Management. Technology, (JEMT), 4(2): 14-19 (2019).
[4] Najafi B., Bahari M., Babapoor A., Evaluation of α-AL2O3-PW Nanocomposites for Thermal Energy Storage in the Agro-products Solar Dryer, J. Energy Storage, 28: 101181 (2020).
[5] Mohammadiun M., Saeedian A., Moahmmadiun H., Enhancement in Free Cooling Potential through Evaporative Cooling Integrated with PCM Based Storage System: Experimental Design and Response Surface Approach, Iran J. Chem. Chem. Eng. (IJCCE), 40(2): 639-645 (2021).
[6] Chananipoor A., Azizi Z., Raei B., Tahmasebi N., Synthesis and Optimization of GO/PMMA/n-Octadecane Phase Change Nanocapsules Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 383-394 (2021).
[7] Velraj R., Seeniraj RV., Hafner B., Faber C., Schwarzer K., Heat Transfer Enhancement in a Latent Heat Storage System, Sol. Energy, 65: 171-180 (1999).
[10] Aminy M., Barhemmati N., Zamzamian SA., Investigating Effect of CuO and TiO2 Nano Particles on Tribological Characteristics of Engine Oil, J. Adv. Mater. Technol. 3(4): 71-76 (2015).
[11] Shadlaghani A., Barhemmati N., Zhao W., Exergy Analysis of the Alumina Nanofluid Through a Ribbed Annular Channel, MRS Commun., (2020).
       DOI:10.1615/TFEC2019.aes.027551
[14] Babapoor A., Azizi M., Karimi G., Thermal Management of a Li-ion Battery Using Carbon Fiber-PCM Composites, Appl. Therm. Eng., 82: 281–290 (2015).
[15] Wang M., Pan N., Predictions of Effective Physical Properties of Complex Multiphase Materials, Mater. Sci. Eng., R 63(1): 1–30 (2008).
[16] Babapoor A., Karimi G., Golestaneh SI., Ahmadi Mezjin M., Coaxial Electro-spun PEG/PA6 Composite Fibers: Fabrication and Characterization, Appl. Therm. Eng. 118: 398-407 (2017).
[17] Babapoor A., Karimi G., Khorram M., Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning, Appl. Therm. Eng. 99: 1225-1235 (2016).
[18] Babapoor A., Karimi G., Sabbaghi S., Thermal Characteristic of Nanocomposite Phase Change Materials During Solidification Process, J. Energy Storage 7:74-81 (2016.
[19] Samimi F., Babapoor A., Azizi MM., Karimi G., Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded with Carbon Fibers, Energy 96: 355-371 (2016).
[20] Karimi G., Azizi MM., Babapoor A., Experimental Study of a Cylindrical Lithium Ion Battery Thermal Management Using Phase Change Material Composites, J. Energy Storage 8: 168-174 (2016).
[21] Golestaneh SI., Karimi G., Babapoor A., Torabi F., Thermal Performance of Co-electrospun Fatty Acid Nanofiber Composites in the Presence of Nanoparticles, Appl. Energy, 212: 552-564 (2018).
[22] Balak Z., Shahedi Asl M., Azizieh M., Kafashan H., Hayati R., Effect of Different Additives and Open Porosity on Fracture Toughness of ZrB2–SiC-Based Composites Prepared by SPS, Ceram. Int., 43(2): 2209-2220 (2017).
[23] Fattahi M., Delbari S. A., Babapoor A., Sabahi Namini A., Mohammadi M., Shahedi Asl M., Triplet Carbide Composites of TiC, WC, and SiC, Ceram. Int., 46(7): 9070-9078 (2020).
[24] Sabahi Namini A., Ahmadi Z., Babapoor A., Shokouhimehr M., Shahedi Asl M., Microstructure and Thermomechanical Characteristics of Spark Plasma Sintered TiC Ceramics Doped with Nano-Sized WC, Ceram. Int., 45(2): 2153-2160 (2019).
[25] Fattahi M., Babapoor A., Delbari S. A., Ahmadi Z., Sabahi Namini A., Shahedi Asl M., Strengthening of TiC Ceramics Sintered by Spark Plasma via Nano-graphite Addition, Ceram. Int., 46(8): 12400-12408 (2020).
[26] Barhemmati-Rajab N., Zhao W., “Investigations of Encapsulated Phase Change Material in Boron Nitride Nanotubes”, 4th Therm. Fluids Eng. Conference, 14-17 April, Las Vegas, NV, USA.  (2019).
[27] Babapoor A., Shahedi Asl M., Ahmadi Z., Sabahi Namini A., Effects of Spark Plasma Sintering Temperature on Densification, Hardness and Thermal Conductivity of Titanium Carbide, Ceram. Int., 44(12): 14541-14546 (2018).
[28] Nguyen T P., Shokouhimehr M., Azizian-Kalandaragh Y., Babapoor A., Van Le Q., Sabahi Namini A., Shahedi Asl M., Delbari S. A., Characteristics of Quadruplet Ti–Mo–TiB2–TiC Composites Prepared by Spark Plasma Sintering, Ceram. Int., (2020),
        DOI: https://doi.org/10.1016/j.ceramint.2020.05.137.
[29] Nguyen T. P., Pazhouhanfar Y., Delbari S. A., Sabahi Namini A., Babapoor A., Mohammadpour Derakhshi Y., Shaddel S., Van Le Q., Shokouhimehr M., Shahedi Asl M., Physical, Mechanical and Microstructural Characterization of TiC–ZrN Ceramics, Ceram. Int., (2020),
        DOI: https://doi.org/10.1016/j.ceramint.2020.05.292.
[30] Shahedi Asl M., Ahmadi Z., Sabahi Namini A., Babapoor A., Motallebzadeh A., Spark Plasma Sintering of TiC–SiCw Ceramics, Ceram. Int., 45(16): 19808-19821 (2019).
[31] Nekahi S., Vaferi K., Vajdi M., Moghanlou FS., Shahedi Asl M., Shokouhimehr M.R., A Numerical Approach to the Heat Transfer and Thermal Stress in a Gas Turbine Stator Blade Made of HfB2, Ceram. Int., 45(18): 24060-24069 (2019).
[32] Vakhshouri A.R., Paraffin as Phase Change Material, (2019).
        DOI: 10.5772/intechopen.90487.
[33] Kant K., Shukla A., Sharma A., Biwole P.H., Heat Transfer Study of Phase Change Materials with Graphene NanoParticle for Thermal Energy Storage, Solar Energy, 146: 453-463 (2017).
[34] Li W., Dong Y., Zhang X., Liu X., Preparation and Performance Analysis of Graphite Additive/Paraffin Composite Phase Change Materials, J. Processes, 7(7): 447 (2019),
[35] Zhang ZG., Wen L., Fang X.M., Shao G., Huang Y.F., Research and Development on Composite Phase Change Thermal Energy Storage Materials, Chem. Ind. Eng. Prog. 05: 462-465 (2003).
[36] Ho C.J., Gao J.Y., Preparation and Thermo Physical Properties of Nanoparticle in Paraffin Emulsion as Phase Change Material, Int. Commun. Heat Mass Transf. 36(5): 467-470 (2009).
[37] Dong G., Xiao X., Liu X., Qian B., Ma Z., Ye S., Chen D., Qiu J., Preparation Characterization of Ag Nanoparticle-Embedded Polymer Electrospun Nanofibers, J. Nanopart Res., 12: 1319–1329 (2010).
[38] Cai Y., Zong X., Ban H., Liu Q., Qiao H., Wei Q., Zhao Y., Fong H., Fabrication, Structural Morphology and Thermal Energy Storage/Retrieval of Ultrafine Phase Change Fibres Consisting of Polyethylene-Glycol and Polyamide 6 by Electrospinning, Polym. Polym. Compos. 21(8): 525–553 (2013).
[39] Teng T.P., Yu C.C., Characteristics of Phase-Change Materials Containing Oxide Nano-Additives for Thermal Storage, Nanoscale Res. Lett., 7: 611-621 (2012).
[40] Liu D., Yang P., Yuan X., Guo J., Liao N., The Defect Location Effect on Thermal Conductivity of Graphene Nanoribbons Based on Molecular Dynamics, Phys. Lett. 379: 810–814 (2015).
[41] Zabihi Z., Araghi H., Effect of Functional Groups
on Thermal Conductivity of Graphene/Paraffin Nanocomposite,
Phys. Lett. 380: 3828–3831 (2016).
[42] Kim J.Y., Lee J.H., Grossman J.C., Thermal Transport in Functionalized Graphene, ACS Nano. 6: 9050–9057 (2012).
[43] Malekpour H., Ramnani P., Srinivasan S., Balasubramanian G., Nika D.L., Mulchandani A., Lake R.K., Balandin A.A., Thermal Conductivity of Graphene with Defects Induced by Electron Beam Irradiation, Nanoscale 8: 14608–14616 (2016).
[44] Xin G., Sun H., Scott SM., Yao T., Lu F., Shao D., Hu T., Wang G., Ran G., Lian J., Advanced Phase Change Composite by Thermally Annealed Defect-Free Graphene for Thermal Energy Storage, ACS Appl. Mater, 6: 15262–15271 (2014).
[45] Shen X., Wang Z., Wu Y., Liu X., He YB., Kim J.K., Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites, Nano Lett. 16: 3585-3593 (2016).
[46] Chu K., Li W.S., Dong H., Role of Graphene Waviness on the Thermal Conductivity of Graphene Composites, Appl. Phys., 111: 221-225 (2013).
[47] Kim H.S., Bae H.S., Yu J., Kim S.Y., Thermal Conductivity of Polymer Composites with the Geometrical Characteristics of Graphene Nanoplatelets, Sci. Rep., 6: 26825 (2016).
[48] Mohammadi Khoshraj B., Seyyed Najafi F., Mohammadi Khoshraj J., Ranjbar H., Microencapsulation of Butyl Palmitate in Polystyrene-co-Methyl Methacrylate Shell for Thermal Energy Storage Application, Iran. J. Chem. Chem. Eng. (IJCCE) 37(3): 187-194 (2018).
        Doi:10.3390/en12010075.
[50] Hao Li W., Lai-Iskandar S., Tan D., Simonini L., Dudon J.P., Leong F.N., Tay R.Y., Tsang S.H., Joshi S.C, Hang Tong Teo E., Thermal Conductivity Enhancement and Shape Stabilization of Phase-Change Materials Using Three-Dimensional Graphene and Graphene Powder, Energy Fuels 34(2): 2435-2444 (2020).
[51] Parmoor S., Sirousazar M., Kheiri F., Kokabi M., Polyethylene/Clay/Graphite Nanocomposites as Potential Materials for Preparation of Reinforced Conductive Natural Gas Transfer Pipes, Iran J. Chem. Chem. Eng. (IJCCE), 39(2): 59-68 (2020).
[52] Nasiri M., Atabaki F., Ghaemi N., Seyedzadeh Z., Fabrication and Characterization of Proton Conductive Membranes Based on Poly (Methyl Methacrylate-co-Maleic Anhydride), Iran J. Chem. Chem. Eng. (IJCCE), 39(1): 43-57 (2020).
[54] Yang T., Liu L.H., Liu J.W., Chen M.L., Wang J.H., Cyanobacterium Metallothione in Decorated Graphene Oxide Nanosheets For Highly Selective Adsorption of Ultra-Trace Cadmium, J. Mater. Chem. 22(41): 2190-2191 (2012).