Comparison of Homogeneous and Heterogeneous Fenton and Sono-Fenton Decolorization of Titan Yellow: Doehlert Optimization, Response Surface Methodology, and Synergic Effects Study

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Ilam University, Ilam, I.R. IRAN

Abstract

In this work, four Fenton processes were used for the decolorization of titan yellow. Experimental conditions such as concentration of H2O2, pH, time, zero-valent iron dose, and concentration of Fe2+ were optimized by Doehlert experimental design and response surface models. In the absence of ultrasonic waves, the application of zero-valent iron had an intense effect on decolorization percent (95% for heterogeneous Fenton with respect to 18% for classical Fenton). The optimum conditions were (0.0054M H2O2, 0.031g/L Fe2+, pH 2.5 and reaction time 47 min) and (0.0013M H2O2, 0.194g/L zero-valent iron, pH 2.5, and reaction time 10 min) for homogeneous and heterogeneous Fenton processes, respectively. Both homogeneous and heterogeneous Sono-Fenton processes reached to decolorization percent of 100%. The optimum pH was 2.5 for the two processes. The optimum conditions for homogeneous and heterogeneous sono-Fenton processes were (0.0035M H2O2, 0.0037g/L Fe2+, and reaction time 30 min) and (0.0014M H2O2, 0.4g/L zero-valent iron, and reaction time 10 min), respectively.

Keywords

Main Subjects


[1] Fernández C., Larrechi M.S., Callao M. P., An Analytical Overview of Processes for Removing Organic Dyes from Wastewater Effluents, TrAC Trend. Anal. Chem., 29(10): 1202-1211 (2010).
[2] Wang N., Zheng T., Zhang G., Wang P., Degradation of Reactive Brilliant Red in Aqueous Solution by Ultrasonic Cavitation, Ultrason. Sonochem., 15(1): 43-48 (2008).
[3] Bankole P.O., Adekunle A.A., Govindwar S.P., Demethylation and Desulfonation of Textile Industry dye, Thiazole Yellow G by Aspergillus niger LAG, Biotechnol. Report.,  23: e00327 (2019).
[4] Tabaraki R., Sadeghinejad N., Biosorption of Six Basic and Acidic Dyes on Brown Alga Sargassum Ilicifolium: Optimization, Kinetic and Isotherm Studies, Water Sci. Technol., 75(11): 2631–2638 (2017).
[5] Tabaraki R., Khodabakhshi M., Multidye Biosorption: Wavelet Neural Network Modeling and Taguchi L16 Orthogonal Array Design, Clean-Soil Air Water, 45(5): 1500499 (2017).
[6] Tabaraki R., Heidarizadi E., Simultaneous Multidye Biosorption by Chemically Modified Sargassum glaucescens: Doehlert Optimization and Kinetic, Equilibrium, ad Thermodynamic Study in Ternary System, Separ. Sci. Technol., 52(4): 583-595 (2017).
[7] Naghizadeh A., Nabizadeh R., Removal of Reactive Blue 29 Dye by Adsorption on Modified Chitosan in the Presence of Hydrogen Peroxide, Environm. Prot. Eng., 42(1): 149-168 (2016).
[8] Malik S.N., Ghosh P.C., Vaidya A.N., Mudliar S.N., Hybrid Ozonation Process for Industrial Wastewater Treatment: Principles and Applications: A Review, J. Water Process Eng., 35: 101193 (2020).
[9] Nidheesh P.V., Gandhimathi R., Ramesh S.T., Degradation of Dyes from Aqueous Solution by Fenton Processes: A Review, Environ. Sci. Pollut. Res., 20: 2099-2132 (2013).
[10] Naghizadeh A., Ghafouri M., Synthesis and Performance Evaluation of Chitosan Prepared from Persian Gulf Shrimp Shell in Removal of Reactive Blue 29 Dye from Aqueous Solution (Isotherm, Thermodynamic and Kinetic Study), Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 25-36 (2017).
[11] Tabaraki R., Sadeghinejad N., Comparison of Magnetic Fe3O4/chitosan and Arginine-Modified Magnetic Fe3O4/Chitosan Nanoparticles in Simultaneous Multidye Removal: Experimental Design and Multicomponent Analysis, Int. J. Biol. Macromol., 120: 2313-2323 (2018).
[12] Dehghani M.H., Naghizadeh A., Rashidi A., Derakhshani E., Adsorption of Reactive Blue 29 Dye from Aqueous Solution by Multiwall Carbon Nanotubes, Desalin. Water Treat., 51(40-42): 7655-7662 (2013).
[13] Kamranifar M., Naghizadeh A., Montmorillonite Nanoparticles In Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng (IJCCE)., 36(6): 127-137 (2017).
[14] Elwakeel K.Z., Shahat A., Khan Z.A., Alshitari W., Guibal E., Magnetic Metal Oxide-Organic Framework Material for Ultrasonic-Assisted Sorption of Titan Yellow and Rose Bengal from Aqueous Solutions, Chem. Eng. J., 392(15):123635 (2020).
[15] Rastgordani M., Zolgharnein J., Mahadavi V., Derivative Spectrophotometry and Multivariate Optimization For Simultaneous Removal of Titan Yellow and Bromophenol Blue Dyes Using Polyaniline@SiO2 Nanocomposite, Microchem. J., 155:104717 (2020).
[16] Cheng M., Li N., Zhu M., Zhang L., Deng Y., Deng C., Positively Charged Microporous Ceramic Membrane for the Removal of Titan Yellow Through Electrostatic Adsorption, J. Environm. Sci., 44: 204-212 (2016).
[17] Shilpa Hiremath M.A.L., Antony Raj M.N., Chandra Prabha V.C., Tamarindus indica Mediated Biosynthesis of Nano TiO2 and its Application in Photocatalytic Degradation of Titan Yellow, J. Environm. Chem. Eng., 6(6): 7338-7346 (2018).
[18] Pal S., Mondal S., Maity J., Mukherjee R., Synthesis and Characterization of ZnO Nanoparticles Using Moringa Oleifera Leaf Extract: Investigation of Photocatalytic and Antibacterial Activity, Int. J. Nanosci. Nanotechnol., 14(2): 111-119 (2018).
[19] Akrami A., Niazi A., Synthesis of Maghemite Nanoparticles and its Application for Removal of Titan Yellow from Aqueous Solutions Using Full Factorial Design, Desalin. Water Treat., 57(47):1-14 (2016).
[20] Raju Ch. A. I., Sunil K., Studies on Biosorption of Titan Yellow Dye With Hypnea Musciformis Powder and Optimization Through Central Composite Design, Int. J. Innov. Res. Sci. Technol., 5(1): 2349-6010 (2018).
[21] Vidya1 C., Manjunatha C., Sudeep M., Ashoka S., Lourdu Antony Raj M.A., Photo-Assisted Mineralisation of Titan Yellow Dye Using ZnO Nanorods Synthesised Via Environmental Benign Route, SN Appl. Sci., 2: 743 (2020).
[22] Ribeiro A.R., Nunes O.C., Pereira M.F.R., Silva A.M.T., An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int., 75: 33-51 (2015).
[23] Wang J.L., Xu L.J., Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Crit. Rev. Environ. Sci. Tec., 42:251-325 (2012).
[24] Von Sonntag C., Advanced Oxidation Processes: Mechanistic Aspects, Water Sci. Technol., 58(5): 1015-1021 (2008).
[25] Guan X., Sun Y., Qin H., Li J., Lo I.M.C., He D., Dong H., The limitations of Applying Zero-Valent Iron Technology in Contaminants Sequestration and the Corresponding Countermeasures: the Development In Zero-Valent Iron Technology
in the Last Two Decades (1994–2014), Water Res., 75(15): 224-248 (2015).
[26] Khaloo S.S., Zolfaghari H., Gholamnia R., Response Surface Methodology for Optimization of 4-Nitrophenol Degradationby a Heterogeneous Fenton-like Reaction on Nano-Zero-Valent Iron, Desalin. Water Treat., 56(8): 2206-2213 (2015).
[27] Ince N.H., Ultrasound-Assisted Advanced Oxidation Processes for Water Decontamination, Ultrason. Sonochem., 40: 97-103 (2018).
[28] Bagal M.V., Gogate P.R., Wastewater Treatment Using Hybrid Treatment Schemes Based on Cavitation and Fenton Chemistry: A Review, Ultrason. Sonochem., 21(1): 1-14 (2014).
[29] Cai M., Su J., Lian G., Wei X., Dong C., Zhang H., Jin M., Wei Z., Sono-Advanced Fenton Decolorization of Azo Dye Orange G: Analysis of Synergistic Effect and Mechanisms, Ultrason. Sonochem., 31:193-200 (2016).
[30] Siddique M., Farooq R., Price G.J., Synergistic Effects of Combining Ultrasound with the Fenton Process in the Degradation of Reactive Blue 19, Ultrason. Sonochem., 21(3): 1206-1212 (2014).
[31] Nair A.T., Makwana A.R., Ahammed M.M., The Use of Response Surface Methodology For Modeling and Analysis of Water and Wastewater Treatment Processes: A Review, Water Sci. Technol., 69(3): 464-478 (2014).
[32] Ferreira S.L.C., dos Santos W.N.L., Quintella C.M., Neto B.B., Bosque-Sendra J.M., Doehlert Matrix:
A Chemometric Tool for Analytical Chemistry, Review, Talanta, 63(4): 1061-1067 (2004).
[33] Naghizadeh A., Regeneration of Carbon Nanotubes Exhausted with Humic Acid Using Electro-Fenton Technology, Arab. J. Sci. Eng., 41(1): 155-161 (2016).
[34] Naghizadeh A., Nasseri S., Mahvi A.H., Rashidi A., Nabizadeh R., Rezaei Kalantary R., Fenton Regeneration of Humic Acid-Spent Carbon Nanotubes, Desalin. Water Treat., 54(9): 2490-2495 (2015).
[35] Naghizadeh A., Momeni F., Derakhshani E., Efficiency of Ultrasonic Process in Regeneration of Graphene Nanoparticles Saturated with Humic Acid, Desalin. Water Treat., 70: 290-293 (2017).