Computational and Experimental Study on the Interaction of Terbium (III) and Ytterbium (III) Complexes Containing 1,10-phenanthroline with Bovine Serum Albumin

Document Type : Research Article

Authors

1 Department of Chemistry, University of Isfahan, Isfahan, I.R. IRAN

2 Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, I.R. IRAN

Abstract

In this work, the interaction of two synthesized complexes [Tb(phen)2Cl3.OH2] and [Yb(phen)2Cl3.OH2] (phen is 1,10-phenanthroline) with bovine serum albumin (BSA) were studied by UV-Vis, fluorescence, and molecular docking examinations. The experimental data indicated that these lanthanide complexes have a high binding affinity with BSA by effectively quenching the fluorescence of BSA via the static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and BSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While the energy transfer from BSA molecules to these complexes occurs with high probability, the binding constants showed that the binding affinity ranked in the order Tb-complex > Yb-complex, which has been related to the radius of Ln3+ ion. Also, the results of competitive experiments and molecular docking calculations assessed the microenvironment residues around the bound mentioned complexes and represent site 3 of BSA, located in subdomain IB, as the most probable binding site for these complexes. The computational results kept in good agreement with experimental data.

Keywords

Main Subjects


[1] Tang K.-Z., Li Y.-F., Tang Y., Liu W.-S., Tang N., Tan M.-Y., Synthesis and Luminescent Properties of the Lanthanide Isothiocyanate Complexes with an Amide-Type Tripodal Ligand, Spectrochim. Acta, Part A, 67(3): 858-863 (2007).
[2] Jahani S., Noroozifar M., Khorasani-Motlagh M., Torkzadeh-Mahani M., Adeli-Sardou M., In Vitro Cytotoxicity Studies of Parent and Nanoencapsulated Holmium-2, 9-dimethyl-1, 10-phenanthroline Complex Toward Fish-Salmon DNA-Binding Properties and Antibacterial Activity, J. Biomol. Struct. Dyn., 37(17): 4437-4449 (2019).
[5] Yinhua D., Foroughi M.M., Aramesh-Boroujeni Z., Jahani S., Peydayesh M., Borhani F., Khatami M., Rohani M., Dusek M., Eigner V., The Synthesis, Characterization, DNA/BSA/HSA Interactions, Molecular Modeling, Antibacterial Properties, and
in Vitro Cytotoxic Activities of Novel Parent and Niosome Nano-Encapsulated Ho(III) Complexes
, RSC Adv., 10(39): 22891-22908 (2020).
[6] Aramesh-Boroujeni Z., Jahani S., Khorasani-Motlagh M., Kerman K., Noroozifar M., Evaluation of Parent and Nano-Encapsulated Terbium(III) Complex Toward its Photoluminescence Properties, FS-DNA, BSA Binding Affinity, and Biological Applications, J. Trace Elem. Med. Biol., 61: 126564 (2020).
[7] Thompson K.H. Orvig C., Editorial: Lanthanide Compounds for Therapeutic and Diagnostic Applications, Chem. Soc. Rev., 35(6): 499-499 (2006).
[8] Fricker S.P., The Therapeutic Application of Lanthanides, Chem. Soc. Rev., 35(6): 524-533 (2006).
[10] Aramesh-Boroujeni Z., Aramesh N., Jahani S., Khorasani-Motlagh M., Kerman K., and Noroozifar M., Experimental and Computational Interaction Studies of Terbium(III) and Lanthanide(III) Complexes Containing 2,2′-Bipyridine with Bovine Serum Albumin and Their in Vitro Anticancer and Antimicrobial Activities, J. Biomol. Struct. Dyn., 39(14): 5105-5116 (2021).
[11] Aramesh-Boroujeni Z., Asadi Z., Electrochemical Determination Venlafaxine at NiO/GR Nanocomposite Modified Carbon Paste Electrode, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(4): 1042-1053 (2021).
[12] Hu Y.-J., Ou-Yang Y., Bai A.-M., Zhao R.-M., and Liu Y., A Series of Novel Rare Earth Molybdotungstosilicate Heteropolyoxometalates Binding to Bovine Serum Albumin: Spectroscopic Approach, Biol. Trace Elem. Res., 136(1): 8-17 (2010).
[13] Wang X., Wang X., Wang Y., Guo Z., Terbium (III) complex as a luminescent sensor for human Serum Albumin in Aqueous Solution, Chem. Commun., 47(28): 8127-8129 (2011).
[14] Liu E., Zhang H.-x., Interaction of the La (III)–Morin Complex with Human Serum Albumin, Journal of Solution Chemistry, 43(8): 1402-1413 (2014).
[16] Aramesh-Boroujeni Z., Jahani S., Khorasani-Motlagh M., Kerman K., Noroozifar M., Parent and Nano-Encapsulated Ytterbium(III) Complex Toward Binding with Biological Macromolecules, in Vitro Cytotoxicity, Cleavage and Antimicrobial Activity Studies, RSC Adv., 10(39): 23002-23015 (2020).
[21] Singh N., Pagariya D., Jain S., Naik S., Kishore N, Interaction of Copper (II) Complexes by Bovine Serum Albumin: Spectroscopic and Calorimetric Insights, J. Biomol. Struct. Dyn., 36(9): 2449-2462 (2018).
[23] Aramesh-Boroujeni Z., Bordbar A.-K., Khorasani-Motlagh M., Fani N., Sattarinezhad E., Noroozifar M., Computational and Experimental Study on the Interaction of Three Novel Rare Earth Complexes Containing 2, 9-dimethyl-1, 10-phenanthroline with Human Serum Albumin, J. Iran. Chem. Soc., 15(7): 1581-1591 (2018).
[24] Aramesh-Boroujeni Z., Bordbar A.-K., Khorasani-Motlagh M., Sattarinezhad E., Fani N., Noroozifar M., Synthesis, Characterization, and Binding Assessment with Human Serum Albumin of Three Bipyridine Lanthanide (III) Complexes, J. Biomol. Struct. Dyn., 37(6): 1438-1450 (2019).
[25] Aramesh-Boroujeni Z., Jahani S., Khorasani-Motlagh M., Kerman K., Aramesh N., Asadpour S., Noroozifar M., Experimental and Theoretical Investigations of Dy(III) Complex with 2,2′-bipyridine Ligand: DNA and BSA Interactions and Antimicrobial Activity Study, J. Biomol. Struct. Dyn., 38(16): 4746-4763 (2020).
[26] Aramesh-Boroujeni Z., Jahani S., Khorasani-Motlagh M., Kerman K., and Noroozifar M., Evaluation of DNA, BSA binding, DNA Cleavage and Antimicrobial Activity of Ytterbium (III) Complex Containing 2, 2′-Bipyridine Ligand, J. Biomol. Struct. Dyn., 38(6): 1711-1725 (2020).
[29] Shi J.-h., Pan D.-q., Jiang M., Liu T.-T., Wang Q., In Vitro Study on Binding Interaction of Quinapril with Bovine Serum Albumin (BSA) Using Multi-Spectroscopic and Molecular Docking Methods, J. Biomol. Struct. Dyn., 35(10): 2211-2223 (2017).
[30] Shi J.-H., Wang Q., Pan D.-Q., Liu T.-T., Jiang M., Characterization of Interactions of Simvastatin, Pravastatin, Fluvastatin, and Pitavastatin with Bovine Serum Albumin: Multiple Spectroscopic and Molecular Docking, J. Biomol. Struct. Dyn., 35(7): 1529-1546 (2017).
[31] Neese F., The ORCA Program System, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2(1): 73-78 (2012).
[32] Kondori T., Shahraki O., Akbarzadeh-T N., Aramesh-Boroujeni Z., Two Novel Bipyridine-based Cobalt (II) Complexes: Synthesis, Characterization, Molecular Docking, DNA-Binding and Biological Evaluation, J. Biomol. Struct. Dyn., 39(2): 595-609 (2021).
[34] Shi J.-H., Lou Y.-Y., Zhou K.-L., Pan D.-Q., Elucidation of Intermolecular Interaction of Bovine Serum Albumin with Fenhexamid: A Biophysical Prospect, J. Photochem. Photobiol., B, 180: 125-133 (2018).
[35] Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J., Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function, J. Comput. Chem., 19(14): 1639-1662 (1998).
[36] Nasir Z., Shakir M., Wahab R., Shoeb M., Alam P., Khan R.H., Mobin M., Lutfullah, Co-precipitation Synthesis and Characterization of Co Doped SnO2 NPs, HSA Interaction Via Various Spectroscopic Techniques and their Antimicrobial and Photocatalytic Activities, International Journal of Biological Macromolecules, 94: 554-565 (2017).
[37] Shen G.-F., Liu T.-T., Wang Q., Jiang M., Shi J.-H., Spectroscopic and Molecular Docking Studies of Binding Interaction of Gefitinib, Lapatinib and Sunitinib with Bovine Serum Albumin (BSA), J. Photochem. Photobiol., B, 153: 380-390 (2015).
[39] Nasir Z., Shakir M., Wahab R., Shoeb M., Alam P., Khan R.H., Mobin M., Co-Precipitation Synthesis and Characterization of Co Doped SnO2 NPs, HSA Interaction Via Various Spectroscopic Techniques and their Antimicrobial and Photocatalytic Activities, Int. J. Biol. Macromol., 94: 554-565 (2017).
[40] Han X.-L., Tian F.-F., Ge Y.-S., Jiang F.-L., Lai L., Li D.-W., Yu Q.-L., Wang J., Lin C., Liu Y., Spectroscopic, Structural and Thermodynamic Properties of Chlorpyrifos Bound to Serum Albumin: A Comparative Study between BSA and HSA,
J. Photochem. Photobiol., B, 109: 1-11 (2012).
[41] Lakowicz J.R., Weber G., Quenching of Fluorescence by Oxygen. Probe for Structural Fluctuations in Macromolecules, Biochemistry, 12(21): 4161-4170 (1973).
[42] Wu, Li C., Hu Y., Liu Y., Study of Caffeine Binding to Human Serum Albumin Using Optical Spectroscopic Methods, Sci. China, Ser. B: Chem., 52(12): 2205-2212 (2009).
[43] Rakotoarivelo N.V., Perio P., Najahi E., Nepveu F., Interaction between Antimalarial 2-Aryl-3 H-indol-3-one Derivatives and Human Serum Albumin, J. Phys. Chem. B, 118(47): 13477-13485 (2014).
[44] Fu Z., Cui Y., Cui F., Zhang G., Modeling Techniques and Fluorescence Imaging Investigation of the Interactions of an Anthraquinone Derivative with HSA and ctDNA, Spectrochim. Acta, Part A, 153: 572-579 (2016).
[45] Ross P.D., Subramanian S., Thermodynamics of Protein Association Reactions: Forces Contributing to Stability, Biochemistry, 20(11): 3096-3102 (1981).
[46] Maltas E., Binding Interactions of Niclosamide with Serum Proteins, J. Food Drug Anal., 4(22): 549-555 (2014).
[47] Buddanavar A.T., Nandibewoor S.T., Multi-Spectroscopic Characterization of Bovine Serum Albumin Upon Interaction with Atomoxetine, J. Pharm. Anal., 7(3): 148-155 (2017).
[49] Lou Y.-Y., Zhou K.-L., Pan D.-Q., Shen J.-L., Shi J.-H., Spectroscopic and Molecular Docking Approaches for Investigating Conformation and Binding Characteristics of Clonazepam with Bovine Serum Albumin (BSA), J. Photochem. Photobiol., B, 167: 158-167 (2017).