Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-pot Synthesis of Polyhydroacridine Libraries

Document Type : Research Article

Authors

1 Department of Chemistry, Alzahra University, P.O. Box 193891176 Tehran, I.R. IRAN

2 School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, I.R. IRAN

Abstract

1,8-Dioxo-decahydroacridines have been synthesized by the three-component reaction of aromatic aldehydes, aromatic amines (or ammonium acetate), and dimedone in the presence of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) under solvent-free conditions. Excellent yields, short reaction times, mild reaction conditions, and easy work-up procedures are advantages of this green method.  

Keywords

Main Subjects


[1] Bienaymé H., Hulme C., Oddon G., Schmitt P., Maximizing Synthetic Efficiency: Multi-component Transformations Lead the Way, Chem. Eur. J., 6, p. 3321 (2000).
[2] Ramón D.J., Yus M., Asymmetric Multicomponent Reactions (AMCRs): The New Frontier, Chem. Int. Ed., 44, p. 1602 (2005).
[3] Hulme C., Gore V., Multi-Component Reactions: Emerging Chemistry in Drug Discovery from Xylocain to Crixivan, Curr. Med. Chem., 10, p. 51 (2003).
[4] Tietze L.F., Modi A., Multicomponent Domino Reactions for the Synthesis of Biologically Active Natural Products and Drugs, Med. Res. Rev., 20, p. 304 (2000).
[5] Vijesh A.M., Isloor A.M., Peethambar S.K., Shivananda K.N., Arulmoli T., Isloor N.A., Hantzsch Reaction: Synthesis and Characterization of Some New 1,4-Dihydropyridine Derivatives as Potent Antimicrobial and Antioxidant Agents, Eur. J. Med. Chem., 46, p. 5591 (2011).
[6] Saeed B.A., Saour K.Y., Elias R.S., Al-Masoudi N.A., Antiviral and Quantitative Structure Activity Relationship Study for Dihydropyridones Derived from Curcumin, Am. J. Immunol., 6, p. 25 (2010). 
[7] Li A.M., Liu X.Y., Wang X.W., Liu J.Y., Design, Synthesis and Anti-HIV-1 Activity of 4,6-Dibenzyl-2-oxo1,2-dihydropyridine-3-carbonitrile, J. Chin. Pharm. Sci., 20, p. 447 (2011).
[8] Surendra Kumar R., Idhayadhulla A., Jamal Abdul Nasser A., Murali K., Synthesis and Anticancer Activity of Some New Series of 1, 4-Dihydropyridine Derivatives, Indian J. Chem. Sect. B, 50, p. 1140 (2011).
[9] Al-Said M.S., Bashandy M.S., Al-Qasoumi S.I., Ghorab M.M., Anti-Breast Cancer Activity of Some Novel 1,2-Dihydropyridine, Thiophene and Thiazole Derivatives, Eur. J. Med. Chem., 46, p. 137 (2011).
[10] Nagarajan G., Anush K.V.S., Mahesh A., Spandana B.L.V.M., Saminathan K., Balasubramaniam V., Manjunath K.S., Synthesis and Anti-inflammatory Activity of 6-(Substituted acridin-9-yl amino)-2,3-dihydro-3-thioxo-[1,2,4] triazolo [4,3-f][1,2,4] triazin-8 (5h)-one, Orient. J. Chem., 24, p. 1053 (2008).
[11] Nadaraj V., Thamarai Selvi S., Mohan S., Microwave-induced Synthesis and Anti-microbial Activities of 7,10,11,12-Tetrahydrobenzo[c]acridin-8(9H)-one Derivatives, Eur. J. Med. Chem., 44, p. 976 (2009).
[12] Belmont P., Bosson J., Godet T., Tiano M., Acridine and Acridone Derivatives, Anticancer Properties and Synthetic Methods: Where Are We Now?, Anti-Cancer Agents Med. Chem., 7, p. 139 (2007).
[13] Bacherikov V.A., Chou T.C., Dong H.J., Chen C.H., Lin Y.W., Tsai T.J., Su T.L., Potent Antitumor N-mustard Derivatives of 9-Anilinoacridine, Synthesis and Antitumor Evaluation, Bioorg. Med. Chem. Lett., 14, p. 4719 (2004).
[14] Zhou J., Hu X., Zhang H., Qian H., Huang W., Qi F., Zhang Y., Synthesis and Biological Evaluation of
5,6-Dihydro-benzo[c]acridin-7-ol Derivatives as Anti-Alzheimer's Disease Drugs, Lett. Drug Des. Discovery, 6, p. 623 (2009).
[15 Martin N., Quinteiro M., Seoane C., Soto J.L., Mora A., Suarez M., Ochoa E., Morales A., Del Bosque J.R., Synthesis of Conformational Study of Acridine Derivatives Related to 1,4-Dihydropyridines, J. Heterocycl. Chem., 32, p. 235 (1995).
[16] Dabiri M., Baghbanzadeh M., Arzroomchilar E., 1-Methylimidazolium triflouroacetate ([Hmim]TFA):
An Efficient Reusable Acidic Ionic Liquid for the Synthesis of 1,8-Dioxo-octahydroxanthenes and 1,8-Dioxo-decahydroacridines, Catal. Commun., 9, p. 939 (2008).
[17] Singh S.K., Singh K.N., Eco-friendly and Facile One-pot Multicomponent Synthesis of Acridinediones in Water under Microwave, J. Heterocycl. Chem., 48, p. 69 (2011).
[18] Wang X.S., Zhang M.M., Shi D.Q., Tu S.J., Wei X.Y., Zong Z.M., An Improved Synthesis of Reduced 9-Arylacridine-1,8-diones from 3-Amino-5,5-dimethylcyclohex-2-enone, Arylaldehydes and 1,3-Dicarbonyl Compounds in Aqueous Medium, J. Chem. Res., p. 719 (2006).
[19] Niknam K., Panahi F., Saberi D., Mohagheghnejad M., Silica-bonded S-sulfonic Acid as Recyclable Catalyst for the Synthesis of 1,8-Dioxo-decahydroacridines and 1,8-Dioxo-octahydroxanthenes, J. Heterocycl. Chem., 47, p. 292 (2010).
[20] Jin T.S., Zhang J.S., Guo T.T., Wang A.Q., Li T.S., One-Pot Clean Synthesis of 1,8-Dioxo-decahydroacridines Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media, Synthesis, p. 2001 (2004).
[21] Das B., Thirupathi P., Mahender I., Reddy V.S., Rao Y.K., Amberlyst-15: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 1,8-Dioxo-octahydroxanthenes and 1,8-Dioxo-decahydroacridines, J. Mol. Catal. A: Chem., 247, p. 233 (2006).
[22] Fan X., Li Y., Zhang X., Qu G., Wang J., An Efficient and Green Preparation of 9-Arylacridine-1,8-dione Derivatives, Heteroat. Chem., 18, p. 786 (2007).
[23] Chandrasekhar S., Rao Y.S., Sreelakshmi L., Mahipal B., Reddy C.R., Tris(pentafluorophenyl)borane-catalyzed Three-component Reaction for the Synthesis of 1,8-Dioxodecahydroacridines under Solvent-free Conditions, Synthesis, p. 1737 (2008).
[24] Nikpassand M., Mamaghani M., Tabatabaeian K., An Efficient One-pot Three-component Synthesis of Fused 1,4-Dihydropyridines using HY-Zeolite, Molecules, 14, p. 1468 (2009).
[25] Kidwai M., Bhatnagar D., Ceric Ammonium Nitrate (CAN) Catalyzed Synthesis of N-substituted Decahydroacridine- 1,8-diones in PEG, Tetrahedron Lett., 51, p. 2700 (2010).
[26] Taguchi A., Schüth F., Ordered Mesoporous Materials in Catalysis, Microporous Mesoporous Mater., 77, p. 1 (2005).
[27] Muylaert I., Verberckmoes A., De Decker J., Van Der Voort P., Ordered Mesoporous Phenolic Resins: Highly Versatile and Ultra Stable Support Materials, Adv. Colloid Interface Sci., 175, p. 39 (2012).
[28] Wu Z., Zhao D., Ordered Mesoporous Materials as Adsorbents, Chem. Commun., 47, p. 3332 (2011).
[29] Karimi B., Zareyee D., Design of a Highly Efficient and Water-tolerant Sulfonic Acid Nanoreactor Based on Tunable Ordered Porous Silica for the Von Pechmann Reaction, Org. Lett., 10, p. 3989 (2008).
[30] Badiei A., Goldooz H., Ziarani G.M., Abbasi A., One pot Synthesis of Functionalized SBA-15 by Using an
8-Hydroxyquinoline-5-sulfonamide-modified Organosilane as Precursor, J. Colloid Interface Sci., 357, p. 63 (2011).
[31] Saikia L., Srinivas D., Redox and Selective Oxidation Properties of Mn Complexes Grafted on SBA-15, Catal. Today, 141, p. 66 (2009).
[32] Margolese D., Melero J.A., Christiansen S.C., Chmelka B.F., Stucky G.D., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chem. Mater., 12, p. 2448 (2000).
[33] Kureshy R.I., Ahmad I., Pathak K., Khan N.H., Abdi S.H.R., Jasra R.V., Sulfonic Acid Functionalized Mesoporous SBA-15 as an Efficient and Recyclable Catalyst for the Synthesis of Chromenes from Chromanols, Catal. Commun., 10, p. 572 (2009).
[34] Naik M.A., Sachdev D., Dubey A., Sulfonic Acid Functionalized Mesoporous SBA-15 for One-Pot Synthesis of Substituted Aryl-14H-dibenzo Xanthenes and Bis(indolyl)methanes, Catal. Commun., 11, p. 1148 (2010).
[35] Reddy S.S., Raju B.D., Kumar V.S., Padmasri A.H., Narayanan S., Rama Rao K.S., Sulfonic Acid Functionalized Mesoporous SBA-15 for Selective Synthesis of 4-Phenyl-1,3-dioxane, Catal. Commun., 8, p. 261 (2007).
[36] Srinivas D., Saikia L., Functionalized SBA-15 and Its Catalytic Applications in Selective Organic Transformations, Catal. Surv. Asia, 12, p. 114 (2008).
[37] Mohammadi Ziarani G., Badiei A., Haddadpour M., Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) for One-Pot Synthesis of Quinoxaline Derivatives, Int. J. Chem., 3, p. 87 (2011).
[38] Mohammadi Ziarani G., Badiei A.R., Khaniania Y., Haddadpour M., One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions, Iran. J. Chem. Chem. Eng., 29(2), p. 1 (2010).
[39] Mohammadi Ziarani G., Badiei A., Shahjafari F., Pourjafar T., A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1-Diacetates Catalyzed by SiO2-Pr-SO3H, S. Afr. J. Chem., 65, p. 10 (2012).
[40] Mohammadi Ziarani G., Badiei A., Azizi, M., Zaradadi, P., Synthesis of 3,4-Dihydropyrano[c]Chromene Derivatives Using Sulfonic Acid Functionalized Silica (SiO2PrSO3H), Iran. J. Chem. Chem. Eng., 30(2), p. 59 (2011).
[41] Balalaie S., Chadegani F., Darviche F., Bijanzadeh H.R., One-pot Synthesis of 1,8-Dioxo-decahydroacridine Derivatives in Aqueous Media, Chin. J. Chem., 27, p. 1953 (2009).
[42] Mohammadi Ziarani G., Badiei A., Hassanzadeh M., Mousavi S., Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives Using Sulfonic Acid Functionalized Silica (SiO2-Pr-SO3H) under Solvent Free Conditions, Arabian J. Chem., In Press, Doi: 10.1016/j.arabjc.2011.01.037.
[43] Wang G.W., Xia J.J., Miao C.B., Wu X.L., Environmentally Friendly and Efficient Synthesis of Various 1,4-Dihydropyridines in Pure Water, Bull. Chem. Soc. Jpn., 79, p. 454 (2006).
[44] Tu S., Gao Y., Miao C., Li T., Zhang X., Zhu S., Fang F., Shi D., A Novel Reaction of Aldeoxime with Dimedone under Microwave Irradiation, Synth. Commun., 34, p. 1289 (2004).
[45] Shchekotikhin Y.M., Getmanenko Y.A., Nikolaeva T.G., Kriven'ko A.P., Synthesis of 9-R1-10-R-1,8-Dioxo-decahydroacridines and Dioximes Based on Them, Chem. Heterocycl. Compd., 37, p. 1228 (2001).
[46] Shen W., Wang L.M., Tian H., Tang J., Yu J.j., Brønsted Acidic Imidazolium Salts Containing Perfluoroalkyl Tails Catalyzed One-pot Synthesis of 1,8-Dioxo-Decahydroacridines in Water, J. Fluorine Chem., 130, p. 522 (2009).
[47] Kantevari S., Bantu R., Nagarapu L., HClO4–SiO2 and PPA–SiO2 Catalyzed Efficient One-pot Knoevenagel Condensation, Michael Addition and Cyclo-Dehydration of Dimedone and Aldehydes in Acetonitrile, Aqueous and Solvent Free Conditions: Scope and Limitations, J. Mol. Catal. A, 269, p. 53 (2007).
[48] Mahdavinia G.H., Bigdeli M.A., Saeidi Hayeniaz Y., Covalently Anchored Sulfonic Acid on Silica Gel (SiO2-R-SO3H) as an Efficient and Reusable Heterogeneous Catalyst for the One-pot Synthesis of 1,8-Dioxo-octahydroxanthenes under Solvent-Free Conditions, Chin. Chem. Lett., 20, p. 539 (2009).
[49] Shi D.Q., Shi J.W., Yao H., Three-component One-pot Synthesis of Polyhydroacrodine Derivatives in Aqueous Media, Synth. Commun., 39, p. 664 (2009).
[50] Rashedian F., Saberi D., Niknam K., Silica-bonded N-propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8-Dioxo-decahydroacridines, 1,8-Dioxo-octahydroxanthenes and Quinoxalines, J. Chin. Chem. Soc., 57, p. 998 (2010).
[51] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279, p. 548 (1998).
[52]  Lim M.H., Blanford C.F., Stein A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts, Chem. Mater., 10, p. 467 (1998).
[53] Wight A.P., Davis M.E., Design and Preparation of Organic-Inorganic Hybrid Catalysts, Chem. Rev., 102, p. 3589 (2002).