High Pressure Phase Equilibrium of (Solvent + Salt + CO2) Systems by the Extended Peng-Robinson Equation of State

Document Type : Research Note

Authors

School of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, I.R. IRAN

Abstract

An extended Peng-Robinson equation of state (EPR-EOS) is used to model the vapor-liquid equilibrium (VLE) in systems containing (water + NaCl + CO2), (water + methanol + NaCl + CO2), (water + Na2SO4 + CO2) and (water + NH4Cl + CO2). The binary and ternary interaction parameters between salt and solvent are adjusted to experimental mean solvent activity of salts (NaCl and Na2SO4). For the system containing (water + Na2SO4 + CO2), the EPR-EOS is used to predict the P-T diagram when the moles of Na2SO4 in 1 kg water are 0.25, 0.5 and 1. The calculated results for the (water + Na2SO4 + CO2) system by the extended PR-EOS are compared with the correlation results by Anderko-Pitzer EOS. The average absolute deviation of (ΔP/Pexp) % between the correlation results by Anderko-Pitzer EOS and experimental data is 8.4 % while this value for extended PR-EOS is 6 %. The P-x diagram for (water + NH4Cl + supercritical-CO2) system at temperatures (333 and 353 K) are also obtained and compared with the calculation results by VTPRLIFAC model. The average absolute deviation between calculation results by VTPRLIFAC model and experimental data is 7.8 % but this value for our calculations is 6.2 %.  

Keywords

Main Subjects


[1] Nighswander, J. A., Karlogerakis, N., Mehrotra, A. K., J. Chem. Eng. Data, 34, 356 (1989).
[2] Wiebe, R. and Gaddy, V.L., J. Am. Chem. Soc., 61, 315 (1939).
[3] Wiebe, R. and Gaddy, V.L., J. Am. Chem. Soc., 62, 815 (1940).
[4] Wiebe, R. and Gaddy, V.L., J. Chem. Eng. Data, 63, 475 (1941).
[5] Zawisza, A. and Malessinka, B., J. Chem. Eng. Data,26, 388 (1981).
[6] Spycher, N., Pruess, K., Ennis-King, J., Geochim. Cosmoschim. Acta, 67(16), 3015 (2003).
[7] Jin, G. and Donohue, M.D., Ind. Eng. Chem. Res.,27, 1737 (1988).
[8] Jin, G. and Donohue, M.D., Ind. Eng. Chem. Res., 30, 240 (1991).
[9] Vilmalchand, P., “Thermodynamics of Multi-Polar Molecules: The Perturbed- Anisotropic- Chain Theory”, Dissertation, The JohnHopkinsUniversity, Baltimore, USA, (1986).
[10] Raatschen, W. and Harvey, A.H., Prausnitz, J.M., Fluid Phase Equilibr., 38, 19 (1987).
[11] Liu, W.B., Li, Y.G., Lu, J.F., Fluid Phase Equilibr., 65, 595 (1999).
[12] Zuo, Y.X., Guo, T.M., Chem. Eng. Sci., 46 (12), 3251 (1991).
[13] Furst, W., Renon, H., AIChE J., 39 (2), 335 (1993).
[14] Thomsen, K., Iliuta, M.C., Rasmussen, P., Chemical Engineering Science, 59, 3631 (2004).
[15] Sun, T., Bullock, K.R., Teja, A.S., Fluid Phase Equilibria, 219, 257 (2004).
[16] Bermejo, M.D., Mart´ın, A., Florusse, L.J., Peters, C.J., Cocero, M.J., Fluid Phase Equilibria, 238, 220 (2005).
[17] Evans, K., Powell, R., Geochimica et Cosmochimica Acta, 70, 5488 (2006).
[18] Sieder, G., Maurer, G., Fluid Phase Equilibria, 225, 85 (2004).
[19] Melhem, G.A., Saini, R., Leibovici, C.F., Fluid Phase Equilibr., 47, 189 (1989).
[20] Pitzer, K.S., J. Phys. Chem., 77, 268 (1973).
[21] Prausnitz, J.M., Lichtenthaler, R.N., Azevedo, E.G., “Molecular Thermodynamics of Fluid Phase Equilibria”, Third Edition, Prentice-Hall, Inc., (1999).
[22] Panagiotopoulos, A.Z., Reid, D.B., Fluid Phase Equilibr., 29, 525 (1986).
[23] Deyhimi, F., Ghalam Choobar, B., Fluid Phase Equilibria, 246, 185 (2006).
[24] Zemaiits, J.F., Clark, D.M., Rafal, M., Scrivner, N.C., "Hand Book of Aqueous Electrolyte Thermo-dynamic", AICHE, Inc., New York, (1986).
[25] Collinet, E., Gmehling, J., Fluid Phase Equilibria, 246, 111 (2006).
[26] Koschel, D., Coxam, J.Y., Rodier, L., Majer. V., Fluid Phase Equilibria, 247, 107 (2006).