Magnetic nano dextrin: nano-Fe3O4@dextrin/ BF3 as a biocompatible catalyst for the synthesis of 3,4-dihydropyrimidin 2(1H)-ones

Document Type : Research Article

Authors

1 Chemistry Department Yazd University, Yazd, Iran

2 Department of Chemistry, College of Science, Yazd University, Yazd, 89195-741, I. R. Iran

3 Yazd University, Yazd, Iran

4 University of Kashan, Kashan, Iran

Abstract

Abstract

Dextrin nanoparticles are usually applied as biocompatible biopolymers. Natural catalysts such as nano dextrin have high catalytic activity. Dextrin has attracted researchers' attention because of its unique chemical structure, water-solubility, biodegradability, biocompatibility, abundance, affordability, availability to produce the applied materials. On the other hand, dextrin is a suitable substrate for trifluoride ions, and some metal ions due to its hydroxyl groups. Thus, the nano-Fe3O4@dextrin/BF3 catalyst was synthesized with readily available, unique, and efficient capability. The synthesized catalyst was characterized by different techniques such as energy-dispersive X-ray (EDX) analysis, Fourier transforms infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) image, and thermogravimetric analysis (TGA). Then the effect of adding nano-Fe3O4@dextrin/BF3 to the reaction of aldehydes, ethyl acetoacetate, and urea was studied on the synthesis of 3,4-dihydropyrimidin-2(1H)-ones derivatives under solvent-free conditions using an electrical mortar-heater. The synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives was carried out at 70 ˚C using a negligible amount (30 mg) of catalyst, in a short time of 20 min with a very suitable yield of 80-92%.

Keywords

Main Subjects


[2] Chen X., Song L., Wang H., Liu S., Yu H., Wang X., Li R., Liu T., Li P., Partial Characterization, the Immune Modulation and Anticancer Activities of Sulfated Polysaccharides from Filamentous Microalgae Tribonema sp, Mol. 24(2): 322 (2019).
[3] Zhu A., Kinetics and Thermodynamics of Water Extraction of Foxtail Millet Polysaccharides, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 510-520 (2022).
[4] Ren Y., Bai Y., Zhang Z., Cai W., Del Rio Flores A., The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development, Mol., 24 (17): 3122 (2019).
[6] Nakagawa K., Kamisaki H., Suzuki T., Sano N., Model-Based Prediction of the Moisture Sorption Kinetics and Humidity-Induced Collapse For Freeze–Dried Cakes, Chem. Eng. Sci.(CES), 248: 117129 (2022).
[7] Chen Y., Eder S., Schubert S., Gorgerat S., Boschet E., Baltensperger L., Boschet E., Städeli C., Kuster S., Fischer P., Influence of Amylase Addition on Bread Quality and Bread Staling, ACS Food Sci. Technol., 1(6): 1143-1150 (2021).
[8] Lewis M.J., Young T.W., Malting Technology: Malt, Specialized Malts and Non-Malt Adjuncts, In "Brewing", Springer, pp 163-190 (2001).
[10] Voncina B., Le Marechal A.M., Grafting of Cotton with β‐cyclodextrin via Poly (carboxylic acid), J. Appl. Polym. Sci., 96 (4): 1323-1328 (2005).
[11] Lachowicz M., Stańczak A., Kołodziejczyk M., Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology, Curr. Drug Targets, 21(14): 1495-1510 (2020).
[12] Loftsson T., Jarho P., Másson M., Järvinen T., Cyclodextrins in drug delivery, Expert Opin Drug Deliv., 2(2): 335-351 (2005).
[13] Das D., Mukherjee S., Pal A., Das R., Sahu S.G., Pal S., Synthesis and Characterization of Biodegradable Copolymer Derived from Dextrin and Poly (Vinyl Acetate) Via Atom Transfer Radical Polymerization, RSC Adv., 6(11): 9352-9359 (2016).
[15] Akolkar S.V., Kharat N.D., Nagargoje A.A.,  Subhedar D.D., Shingate B.B., Ultrasound-Assisted β-Cyclodextrin Catalyzed One-Pot Cascade Synthesis of Pyrazolopyranopyrimidines in Water, Catal. Lett. 150(2): 450-460 (2020).
[16] Nariya P., Das M., Shukla F., Thakore S., Synthesis of Magnetic Silver Cyclodextrin Nanocomposite as Catalyst for Reduction of Nitro Aromatics and Organic Dyes, J. Mol. Liq., 300: 112279 (2020).
[18] Kamat S.R., Mane A.H., Patil A.D., Lohar T.R., Salunkhe R.S., Synthesis of Xanthene and Coumarin Derivatives in Water by Using β-Cyclodextrin, Res. Chem. Intermed., 47(3): 911-924 (2021).
[20] Tohry A., Dehghan R., Hatefi P., Chelgani S.C., A Comparative Study Between the Adsorption Mechanisms of Sodium Co-Silicate and Conventional Depressants for the Reverse Anionic Hematite Flotation, Sep. Sci. Technol., 57(1): 141-158 (2022).
[21] Phan D.-N., Khan M.Q., Nguyen N.-T., Phan T.-T., Ullah A., Khatri M., Kien N.N., Kim I.-S., A Review on the Fabrication of Several Carbohydrate Polymers into Nanofibrous Structures Using Electrospinning for Removal of Metal Ions and Dyes, Carbohydr. Polym., 252: 117175 (2021).
[23] Ansari H., Shabanian M., Khonakdar H.A., Using a β-cyclodextrin-functional Fe3O4 as a Reinforcement of PLA: Synthesis, Thermal, and Combustion Properties, Polym. Plast. Technol. Eng., 56(12): 1366-1373 (2017).
[24] Wu G.,Liu Q., Wang J., Xia S., Wu H., Zong J., Han J.; Xing W., Facile Fabrication of Rape Straw Biomass fiber/β-CD/Fe3O4 as Adsorbent for Effective Removal of Ibuprofen, Ind. Crops Prod. 173: 114150 (2021).
[25] Ghazimokri H.S., Aghaie H., Monajjemi M., Gholami M.R., Removal of Methylene Blue Dye from Aqueous Solutions Using Carboxymethyl-β-Cyclodextrin-Fe3O4 Nanocomposite: Thermodynamics and Kinetics of Adsorption Process, Russ. J. Phys. Chem. A, 96(2): 371-380 (2022).
[26] Liu K., Liu H., Li L., Li W., Liu J., Tang T., Adsorption of Methyl Violet From Aqueous Solution Using β-Cyclodextrin Immobilised onto Mesoporous Silica, Supramol. Chem. 33(4): 107-121 (2021).
[27] Ghazali A.A., Marahel F., Mombeni Goodajdar B., Synthesised CM-β-CD-Fe3O4NPs: as an Environmental Friendly And Effective Adsorbent for Elimination of Boron from Aqueous Solutions, Int. J. Environ. Anal. Chem., 1-20 (2021).
[28] Badruddoza A.Z.M., Shawon Z.B.Z., Tay W.J.D., Hidajat K., Uddin M.S., Fe3O4/Cyclodextrin Polymer Nanocomposites for Selective Heavy Metals Removal from Industrial Wastewater, Carbohydr. Polym., 91(1): 322-332 (2013).
[29] Song X.-J., Qin Z.-Q., Wang X.-B., Yang F., Fang Q.-L., She C.-G., β-Cyclodextrin Modified with Magnetic Nanoparticles Noncovalently for β-Naphthol Removal from Wastewater, Synth. React. Inorg. Met.-Org. Chem., 46(1): 143-146 (2016).
[30] Mombeni Goodajdar B., Marahel F., Niknam L., Pournamdari E., Mousavi E., Ultrasonic Assisted and Neural Network Model for Adsorption of of humic acid (HAs) by Synthesised CM-β-CD-Fe3O4NPs from Aqueous Solutions, Int. J. Environ. Anal. Chem, 1-20 (2021).
[31] Emara N.A., Amin R.M., Youssef A.F., Elfeky S.A., Recycling of Steel Industry Waste Acid in the Preparation of Fe3O4 Nanocomposite for Heavy Metals Remediation from Wastewater, Rev. Chim., 71: 34-46 (2020).
[34] Pálinkó I., Heterogeneous Catalysis: A Fundamental Pillar Of Sustainable Synthesis, Green Chem., pp 415-447 (2018).
[35] Bag S., Dasgupta S., Torok B., Microwave-assisted heterogeneous catalysis: an environmentally benign tool for Contemporary Organic Synthesis, Curr. Org. Synth., 8(2): 237-261(2011).
[37] Escobar A.M., Blustein G., Luque R., Romanelli G.P., Recent Applications of Heteropolyacids and Related Compounds in Heterocycle Synthesis. Contributions between 2010 and 2020, Catalysts, 11(2): 291 (2021).
[38] Baig R.B.N., Varma R.S., Magnetically Retrievable Catalysts for Organic Synthesis, Chem. Commun., 49: 752 (2013).
[39] Cao S., Tao F.F., Tang Y., Li Y., Yu J., Size-and Shape-Dependent Catalytic Performances of Oxidation and Reduction Reactions on Nanocatalysts, Chem. Soc. Rev., 45 (17): 4747-4765 (2016).
[40] Pawar N.S., Patil P.N., Pachpande R.N., An Efficient Synthesis and Antibacterial Activity of Some Novel 3,4– Dihydropyrimidin-2-(1H)-Ones, Chemistry Proceedings, 8(1): 37 (2022).
[41] Khaldi-Khellafi N., Makhloufi-Chebli M., Oukacha-Hikem D., Bouaziz S.T., Lamara K.O., Idir T., Benazzouz-Touami A., Dumas F., Green Synthesis, Antioxidant and Antibacterial Activities of 4-aryl-3,4-dihydropyrimidinones/thiones Derivatives of Curcumin. Theoretical Calculations And Mechanism Study, J. Mol. Struct., 1181: 261-269 (2019).
[47] Rana P., Dixit R., Sharma S., Dutta S., Yadav S., Arora B., Kaushik B., Rana P., Sharma R.K., Magnetic Boron Nitride Nanosheets Decorated
with Cobalt Nanoparticles as Catalyst for the Synthesis of 3, 4-Dihydropyrimidin-2 (1 H)-ones/thiones
, ACS Appl. Nano Mater., 5(4): 4875-4886 (2022).
[50] Babaei E., Mirjalili B.B.F., Fe3O4@ nano-dextrin/Ti (IV): A Unique and Recyclable Catalyst for Aqueous Pseudo-Four-Component Reaction., J. Organomet. Chem., 906: 121055 (2020).
[51] Karimi Askarani H., Karimi Zarchi M.A., Mirjalili B.F., Bamoniri A., One-Pot Synthesis of Polyhydroquinoline Derivatives Using Nano-Fe3O4@dextrin/BF3 as a Magnetic Biodegradable Catalyst, J. Iran. Chem. Soc., 19: 3189–3203 (2022).
[52] Sibous S., Boukhris S., Ghailane R., Habbadi N., Hassikou A., Souizi A., Easy Synthesis of 3,4-dihydropyrimin-2-(1H)-one Derivatives Using Phosphate Fertilizers MAP, DAP, and TSP as Efficient Catalysts, J. Turkish Chem. Soc, 4(2): 481 - 488 (2017).
[53] Khorshidi A., Tabatabaeian K., Azizi H., Aghaei-Hashjin M., Abbaspour-Gilandeh E., Efficient One-Pot Synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones Catalyzed by a New Heterogeneous Catalyst Based on Co-functionalized Na+-Montmorillonite, RSC Adv., 7(29): 17732-17740 (2017).
[54] Khabazzadeh H., Kermani E.T., Jazinizadeh T., An Efficient Synthesis of 3, 4-dihydropyrimidin-2 (1H)-Ones Catalyzed by Molten [Et3NH][HSO4], Arabian J. Chem., 5(4): 485-488 (2012).
[57] Krishna B., Payra S., Roy S., Synthesis of Dihydropyrimidinones via Multicomponent Reaction Route over Acid Functionalized Metal-Organic Framework Catalysts, J. Colloid Interface Sci., 607: 729-741 (2022).
[58] Moutaoukil Z., Ronco C., Benhida R., One-pot Synthesis of Dihydropyrimidines via Eco-Friendly Phosphorus Derivatives Catalysis, J. Saudi Chem. Soc., 26(1): 101398 (2022).