Mechanical Modeling of a High-Performance Solar Desalination System Based on a Three-Step Approach

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Mohandesi Tamin Payagam Co., Tehran, I.R. IRAN

Abstract

Solar desalination systems are a kind of water purification system that can be utilized in dry regions. However, the low efficiency and performance of these systems are some of the main challenges of these mechanisms that affect their development. So In this paper, a novel modified model is presented for increasing the efficiency and performance of these systems. This suggested modification is based on a triple action. The first of these actions includes discovering the optimal location for the installation of the solar still water. Increasing the contact surface of the water by spraying and keeping the saltwater in a wide solar still is a second approach for increasing the evaporation of water. In the end, a modern condensing system based on an innovative fog (water particle) trapper/harvester. This system includes fog fences, a cool water pipe loop based on the outdoor temperature, and forced-controlled airflow. Therefore based on this method, a conceptual design of the solar still water is modeled For UAE. The results of this study show that the modified solar still can make 3.94 liter/m2 per day. The cost per liter of each liter of water is $ 0.0344. These results are shown that the efficiency of the proposed model is two times higher than the traditional method with the same cost. Also, these results are in an acceptable range in comparison with the new modified models presented by researchers.

Keywords

Main Subjects


[1] Bazregari M.J., N. Norouzi, Gholinejad M., Khavasi E., Fani M., A 2E Analysis and Optimization of a Hybrid Solar Humidification-Dehumidification Water Desalination System and Solar Water Heater,  Iran. J. Chem. Chem. Eng. (IJCCE), 41(6): 2135–2152 (2022). 
[2] Sharon H., Reddy K.S., A Review of Solar Energy Driven Desalination Technologies, Renew. Sustain—Energy Rev., 41:  1080–1118 (2015).
[3] El-Dessouky H., Ettouney H., Teaching Desalination - A Multidiscipline Engineering Science, Heat Transf. Eng., 23 (5): 1–3 (2002).
[4] Al-Ruzouq R., Shanableh A.,  Merabtene T., Siddique M., Khalil M.A., Idris A., Almulla E., Potential Groundwater Zone Mapping Based on Geo-Hydrological Considerations and Multi-Criteria Spatial analysis: North UAE, Catena. 173: 511–524 (2019).
[5] Khoshrou I., Jafari Nasr M.R., K. Bakhtari, Exergy Analysis of the Optimized MSFD Type of Brackish Water Desalination Process, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 191–208 (2017).
[6] Humplik T., O’Hern J. Lee, S.C., Fellman B.A., Baig M.A., Hassan S.F., Atieh M.A., Rahman F., Laoui T., Karnik R., Wang E.N., Nanostructured Materials for Water Desalination, Nanotechnology, 22(29):  292001 (2011).
[7] Kariman H., Hoseinzadeh S., Heyns S., Sohani A., Modeling and Exergy Analysis of Domestic MED Desalination with Brine Tank, Desalin. WATER Treat. 197:  1–13 (2020).
[8] Zhou Y., Tol R.S.J., Evaluating the Costs of Desalination and Water Transport, Water Resour. Res., 41(3) (2005).
[9] S. Hoseinzadeh, R. Yargholi, H. Kariman, P.S. Heyns, Exergoeconomic Analysis and Optimization of Reverse Osmosis Desalination Integrated with Geothermal Energy, Environ. Prog. Sustain. Energy., 39(5): e13405. (2020).
[10] Kariman H., Hoseinzadeh S., Heyns P.S., Energetic and Exergetic Analysis of Evaporation Desalination System Integrated with Mechanical Vapor Recompression Circulation, Case Stud. Therm. Eng., 16:  100548 (2019).
[11] Hoseinzadeh S., Astiaso Garcia D., Techno-Economic Assessment of Hybrid Energy Flexibility Systems for Islands’ Decarbonization: A Case Study in Italy, Sustain. Energy Technol. Assessments, 51: 101929 (2022)
[12] López-Zavala R., VelázqueN. Z, González-Uribe L.A., Quezada-Espinoza K.M., Aguilar-Jiménez J.A., Islas S., Nakasima-López M., González E., Absorption Cooling and Desalination System with a Novel Internal Energetic and Mass Integration that Increases Capacity and Efficiency, Desalination, 471: 114144 (2019).
[13] Kariman H., Hoseinzadeh S., Shirkhani A., Heyns P.S., Wannenburg J., Energy and Economic Analysis of Evaporative Vacuum Easy Desalination System with Brine Tank, J. Therm. Anal. Calorim., 140:  1935–1944 (2020)
[14] Mahmoudan A., Samadof P., Hosseinzadeh S., Garcia D.A., A Multigeneration Cascade System Using Ground-Source Energy with Cold Recovery: 3E Analyses and Multi-Objective Optimization, Energy. 233:  121185 (2021).
[15] Saleh L., Al Zaabi M., Mezher T., Estimating the Social Carbon Costs from Power and Desalination Productions in UAE, Renew. Sustain. Energy Rev.,  114 109284. (2019)
[16] Norouzi N., Talebi S., Fabi M., Khajehpour H., Heavy Oil Thermal Conversion and Refinement to the Green Petroleum: A Petrochemical Refinement Plant Using the Sustainable Formic Acid for the Process, Biointerface Res. Appl. Chem., 10:  6088–6100 (2020).
[17] Norouzi N., Kalantari G., Talebi S., Combination of Renewable Energy in the Refinery, with Carbon Emissions Approach, Biointerface Res. Appl. Chem., 10:  5780–5786(2020).
[18] Kalogirou S., Seawater Desalination Using Renewable Energy Sources, Prog. Energy Combust. Sci., 31: 242–281 (2005).
[19] Jones E., Qadir M., Van Vliet M.T.H., V. Smakhtin, Kang S., The State of Desalination and Brine Production: A Global Outlook, Sci. Total Environ., 657: 1343–1356 (2019).
[20] Subramani A., Badruzzaman M., Oppenheimer J. J, Jacangelo.G., Energy Minimization Strategies and Renewable Energy Utilization for Desalination: A Review, Water Res., 45: 1907–1920 (2011).
[24] Yargholi R., Kariman H., Hoseinzadeh S., Bidi M., Naseri A., Modeling and Advanced Exergy Analysis of Integrated Reverse Osmosis Desalination with Geothermal Energy, Water Supply., 20:  984–996 (2020).
[27] Fani M., Norouzi N., Ramezani M., Energy, Exergy, and Exergoeconomic Analysis of Solar Thermal Power Plant Hybrid with Designed PCM Storage, Int. J. Air-Conditioning Refrig., 28:  2050030 (2020).
[28] Vedadghavami A., Minoei F., Hosseini S.S., Practical Techniques for Improving the Performance of Polymeric Membranes and Processes for Protein Separation and Purification, Iran. J. Chem. Chem. Eng. (IJCCE), 37(2): 1–23 (2018).
[29] Setoodeh N., Rahimi R., Ameri A., Modeling and Determination of Heat Transfer Coefficient in a Basin Solar Still Using CFD, Desalination., 268:  103–110 (2011).
[30] Parekh S., Farid M., Selman J., Alhallaj S., Solar Desalination with a Humidification-Dehumidification Technique — A Comprehensive Technical Review, Desalination, 160: 167–186 (2004).
[31] Zhou X., Xiao B., Liu W., Guo X., Yang J., Fan J., Comparison of Classical Solar Chimney Power System and Combined Solar Chimney System for Power Generation and Seawater Desalination, Desalination, 250:  249–256 (2010).
[32] Moustafa S.M.A., Jarrar D.I., El-Mansy H.I., Performance of A Self-Regulating Solar Multistage Flash Desalination System, Sol. Energy, 35: 333–340 (1985).
[34] Ahmadi A., Noorpoor A.R., Kani A.R., Saraei A., Modeling and Economic Analysis of MED-TVC Desalination with Allam Power Plant Cycle in Kish Island, Iran. J. Chem. Chem. Eng. (JCE0, 40(6):  1882–1892 (2021).
[35] Zhang Q., Yi G., Fu Z., Yu H., Chen S., Quan X., Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance, ACS Nano. acsnano. 9b06180 (2019).
[36] Al-Othman A., Tawalbeh M., El Haj Assad M., Alkayyali T., Eisa A., Novel Multi-Stage Flash (MSF) Desalination Plant Driven by Parabolic trough Collectors and a Solar Pond: A Simulation Study in UAE, Desalination, 443:  237–244 (2018).
[37] Fattahi M., Karamoddin M., Peyvandi K., Varaminian F., Effects of Halide Anions on Water Desalination Based on Crystallization Methods: Freezing and Tetrahydrofuran Hydrate Formation, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 925–935 (2022).
[38] Environment Statistics, (Accessed November 5, (2019).
[40] Shames I.H., "Mechanics of Fluids", Mcgraw-Hill, New York, (1992).
[41] Santos-Ruiz I., López-Estrada F.-R., Puig V., Valencia-Palomo G., Simultaneous Optimal Estimation of Roughness and Minor Loss Coefficients in a Pipeline, Math. Comput. Appl., 25: 56 (2020).
[42] Rojas J., Verde C., Torres L., Pérez E., On-Line Head Loss Identification for Monitoring of Pipelines, IFAC-Papers On Line, 51: 748–754 (2018).
[44] Grundstein A., Meentemeyer V., Dowd J., Maximum Vehicle Cabin Temperatures under Different Meteorological Conditions, Int. J. Biometeorol. 53: 255–261 (2009).
[45] Nasir M.A., Jasni F.M., "Experimental Comparison Study of the Passive Methods in Reducing Car Cabin Interior Temperature", in: Int. Conf. Mech. Automob. Robot. Eng. (2012)
[46] Grundstein A.J., Duzinski S.V., Dolinak D., Null J., Iyer S.S., Evaluating Infant Core Temperature Response in a Hot Car Using a Heat Balance Model, Forensic Sci. Med. Pathol., 11:  13–19 (2015).
[47] Michael J. Moran M.B.B., Shapiro H.N., D.B. Daisie, "Fundamentals of Engineering Thermodynamics", 9th Edition, Wiley & Sons., (2010)
[48] Moisture Holding Capacity of Air, (n.d.). (Accessed November 5, )2019).
[49] Maximum Moisture Carrying Capacity of Air, (n.d.). (Accessed November 5, 2019).
[50] Behzad Siavash AMOLI K.S., Seyed Soheil Mousavi AJAROSTAGHI, M.A. Delavar, No Title, J. Therm. Eng., 81: 90–102 (2022).
[51] Palaszewski S.J., Jiji L.M., Weinbaum S., A Three-Dimensional Air-Vapor-Droplet Local Interaction Model for Spray Units, J. Heat Transfer., 103: 514–521  (1981).
[52]Pagliaro M., Preparing for the Future: Solar Energy and Bioeconomy in the United Arab Emirates, Energy Sci. Eng., 7:  1451–1457 (2019).
[53]Alnaser N.W., Alnaser W.E., The Impact of the Rise of Using Solar Energy in GCC Countries, Renew. Energy Environ. Sustain, 4: 7 (2019).
[56] Schemenauer M.L., Robert S., Pablo Osses, "Fog collection evaluation and operational projects in the Hajja Governorate", in: Proc. Third Int. Conf. Fog, Fog Collect. Dew,  Yemen (2004).
[57] Fog harvesting | ClimateTechWiki, (n.d.) (Accessed November 5, 2019).
[59] Modi K.V., Nayi K.H., Sharma S.S., Influence of Water Mass on the Performance of Spherical Basin Solar Still Integrated with Parabolic Reflector, Groundw. Sustain. Dev. 10: 100299 (2020).  
[60] Sethi A.K., Dwivedi V.K., Exergy Analysis of Double Slope Active Solar Still under Forced Circulation Mode, Desalin. Water Treat, 51: 7394–7400 (2013).