Electrochemical Oxidation of Wastewater Contaminated with Astrazon Red Violet 3RN Dye on Ti/IrO₂/RuO₂: Evaluation of Process Parameters, Kinetics, and Energy Consumption

Document Type : Research Article

Author

Department of Emergency Aid and Disaster Management, Faculty of Applied Science, Ataturk University, Erzurum, TURKEY

Abstract

The performance of the electrochemical oxidation of wastewater contaminated with Astrazon Red Violet 3RN Dye on Ti/IrO₂/RuO₂ was evaluated under a range of significant process variables: support electrolyte type and concentration, initial dye concentration, pH, current density, and temperature. ARV-3RN dye removal efficiency was over 90% at the high concentrations of NaCl (≥ 5.0 mM) and lower pH values (3.0 ≤ pH≤ ~7.5). At the same time, the temperature increases promoted faster degradation and less energy consumption except at 10°C temperature. While the increase in the initial dye concentration had a negative effect on the removal efficiency (from 99.84% to 65.02%), energy consumption increased from 2.5 kW-h/m3  to 3.25 kW-h/m3. Although the change in applied current density did not cause a significant difference in the removal efficiency (from 99.34% to 92.79%), it caused the energy consumption to increase from 3.10 kW-h/m3 to 25.767 kW-h/m3. Electrooxidation kinetics were evaluated using Pseudo-zero-order, Pseudo-first-order, and pseudo-second-order models. Kinetic data fitted best Pseudo-first-order model. The activation energy (Ea) of the EAOP process calculated using
the Arrhenius equation is 13.707 kJ/mol. Thermodynamic parameters ΔH°, ΔS°, and ΔG° evaluated by Eyring's equation calculated 11.196 kJ/mol, -0.1244 kJ/mol, and 47.662 for 293 K, respectively.

Keywords

Main Subjects


[1] Jun L.Y., Yon L.S., Mubarak N.M., Bing C.H., Pan S., Danquah M.K., Abdullah E.C., Khalid M., An Overview of İmmobilized Enzyme Technologies for Dye and Phenolic Removal from Wastewater, J. Environ. Chem. Eng., 7: 102961 (2019).
[2] Ajiboye T.O., Oyewo O.A., Onwudiwe D.C., Simultaneous Removal of Organics and Heavy Metals from İndustrial Wastewater: A Review, Chemosphere, 262: 128379 (2021).
[3] Bazrafshan E., Mohammadi L., Ansari-Moghaddam A., Mahvi A.H., Heavy Metals Removal from Aqueous Environments by Electrocoagulation Process–A Systematic Review, J. Environ. Heal. Sci. Eng., 13: 74 (2015).
[4] Peramune D., Manatunga D.C., Dassanayake R.S., Premalal V., Liyanage R.N., Gunathilake C., Abidi N., Recent Advances in Biopolymer-based Advanced Oxidation Processes for Dye Removal Applications: A Review, Environ. Res., 215: 114242 (2022).
[5] Tkaczyk A., Mitrowska K., Posyniak A., Synthetic Organic Dyes as Contaminants of the Aquatic Environment and their İmplications for Ecosystems: A Review, Sci. Total Environ., 717: 137222 (2020).
[6] Lanka S., Gantala S.N., Pandrangi S.L., Chitosan and Chitosan-based Nanocomposite Membranes in the Removal of Synthetic Dye from Effluent Wastewaters, Text. Waste. Treat., 169-177 (2022).
[7] İrdemez Ş., Özyay G., Torun F.E., Kul S., Bingül Z., Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells, Ecol. Chem. Eng. S., 29: 199-216 (2022).
[8] Gambhir R.S., Kapoor V., Nirola A., Sohi R., Bansal V., Water Pollution: Impact of Pollutants and New Promising Techniques in Purification Process, J. Hum. Ecol., 37(2): 103-109 (2012).
[9] Mella B., Puchana-Rosero M.J., Costa D.E.S., Gutterres M., Utilization of Tannery Solid Waste as an Alternative Biosorbent for Acid Dyes in Wastewater Treatment, J. Mol. Liq., 242: 137 (2017).
[11] Sözüdoğru O., Fil B.A., Boncukcuoğlu R., Aladağ E., Kul S., Adsorptive Removal of Cationic (BY2) Dye from Aqueous Solutions onto Turkish Clay: Isotherm, Kinetic, and Thermodynamic Analysis, Part. Sci. Technol., 34: 103-101 (2016).
[12] Okoniewska E., Removal of Selected Dyes on Activated Carbons, Sustainability, 13: 4300 (2021).
[15] Titchou F.E., Zazou H., Afanga H., El Gaayda J., Ait Akbour R., Lesage G., Rivallin M., Cretin M., Hamdani M., Electrochemical Oxidation Treatment of Direct Red 23 Aqueous Solutions: Influence of the Operating Conditions, Sep. Sci. Technol., 57: 1501 (2022).
[18] Asadullah M., Asaduzzaman M., Kabir M.S., Mostofa M.G., Miyazawa T., Chemical and Structural Evaluation of Activated Carbon Prepared from Jute Sticks for Brilliant Green Dye Removal from Aqueous Solution, J. Hazard. Mater., 174: 437 (2010).
[19]  Tran H.T., Lin C., Bui X.-T., Nguyen M.K., Cao N.D.T., Mukhtar H., Hoang H.G., Varjani S., Ngo H.H., Nghiem L.D., Phthalates in the Environment: Characteristics, Fate and Transport, and Advanced Wastewater Treatment Technologies, Bioresour. Technol., 344: 126249 (2022).
[20] Kubra K.T., Salman M.S., Hasan M.N., Enhanced Toxic Dye Removal from Wastewater Using Biodegradable Polymeric Natural Adsorbent, J. Mol. Liq., 328: 115468 (2021).
[21] Divyapriya G., Singh S., Martínez-Huitle C.A., Scaria J., Karim A.V, Nidheesh P.V, Treatment of Real Wastewater by Photoelectrochemical Methods: an Overview, Chemosphere, 276: 130188 (2021).
[23] Manikandan P., Palanisamy P.N., Baskar R., Sakthisharmila P., Sivakumar P., A Comparative Study on the Competitiveness of Photo-Assisted Chemical Oxidation (PACO) with Electrocoagulation (EC) for the Effective Decolorization of Reactive Blue Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 71 (2017).
[24]   Martínez-Huitle C.A., Panizza M., Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment, Curr. Opin. Electrochem., 11: 62 (2018).
[25] Ghribi A., Bagane M., Removal of Congo Red and Rhodamine B Dyes from Aqueous Solution by Fenton Process: Optimization of Operational Parameters, Iran. J. Chem. Chem. Eng. (IJCCE), 42(3): 801-809 (2023).
[26] Shin Y.-U., Yoo H.-Y., Ahn Y.-Y., Kim M.S., Lee K., Yu S., Lee C., Cho K., Kim H., Lee J., Electrochemical Oxidation of Organics in Sulfate Solutions on Boron-Doped Diamond Electrode: Multiple Pathways for Sulfate Radical Generation, Appl. Catal. B Environ., 254: 156 (2019).
[27] Hodges B.C., Cates E.L., Kim J.-H., Challenges and Prospects of Advanced Oxidation Water Treatment Processes Using Catalytic Nanomaterials, Nat. Nanotechnol., 13: 642 (2018).
[28] Ekrami-Kakhki M.-S., Farzaneh N., Abbasi S., Makiabadi B., Electrocatalytic Activity of Pt Nanoparticles Supported on Novel Functionalized Reduced Graphene Oxide-Chitosan for Methanol Electrooxidation, J. Mater. Sci. Mater. Electron., 28: 12373 (2017).
[30] Bassyouni D.G., Hamad H.A., El-Ashtoukhy E.-S.Z., Amin N.K., El-Latif M.M.A., Comparative Performance of Anodic Oxidation and Electrocoagulation as Clean Processes for Electrocatalytic Degradation of Diazo Dye Acid Brown 14 in Aqueous Medium, J. Hazard. Mater., 335: 178 (2017).
[31] Nidheesh P.V, Zhou M., Oturan M.A., An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes, Chemosphere, 197: 210 (2018).
[34] Nidheesh P.V, Zhou M., Oturan M.A., An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes, Chemosphere, 197: 210 (2018).
[35] Baddouh A., Rguiti M.M., El Ibrahimi B., Hussain S., Errami M., Tkach V., Bazzi L., Hilali M., Anodic Oxidation of Methylene Blue Dye from Aqueous Solution Using SnO2 Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 38: 175 (2019).
[38] Fıl B.A., Boncukcuoğlu R., Yilmaz A.E., Bayar S., Electro‐Oxidation of Pistachio Processing Industry Wastewater Using Graphite Anode, Clean–Soil, Air, Water, 42: 1232 (2014).
[39] Kul S., Boncukcuoglu R., Yilmaz A.E., Fil B.A., Treatment of Olive Mill Wastewater with Electro-Oxidation Method, J. Electrochem. Soc., 162: G41 (2015).
[41] Garcia-Segura S., Ocon J.D., Chong M.N., Electrochemical Oxidation Remediation of Real Wastewater Effluents — A Review, Process Saf. Environ. Prot., 113: 48 (2018).
[43] Ekrami-Kakhki M.-S., Farzaneh N., Fathi E., Superior Electrocatalytic Activity of PtSrCoO3−δ Nanoparticles Supported on Functionalized Reduced Graphene Oxide-Chitosan for Ethanol Oxidation, International Journal of Hydrogen Energy, 42: 21131 (2017).
[45] Khezrianjoo S., Revanasiddappa H.D., Evaluation of Kinetics and Energy Consumption of the Electrochemical Oxidation of Acid Red 73 in Aqueous Media, Toxicol. Environ. Chem., 98: 759 (2016).
[47] Jardak K., Dirany A., Drogui P., El Khakani M.A., Electrochemical Degradation of Ethylene Glycol in Antifreeze Liquids Using Boron Doped Diamond Anode, Sep. Purif. Technol., 168: 215 (2016).
[48] Lakshmipathiraj P., Bhaskar Raju G., Sakai Y., Takuma Y., Yamasaki A., Kato S., Kojima T., Studies on Electrochemical Detoxification of Trichloroethene (TCE) on Ti/IrO2–Ta2O5 Electrode from Aqueous Solution, Chem. Eng. J., 198199: 211 (2012).
[49] Liu S., Xu L., Huang X., Xie J., Chai Z., Chen X., Electrochemical Dissolution Behavior of Haynes 214 Honeycomb Structure in NaNO3 Solutions for Low Current Density Electrochemical Machining, J. Mater. Eng. Perform., 31: 3559 (2022).
[50] Wang Y., Kong G., Che C., Zhu Y., Effect of NO3−  Ion on the Corrosion Behavior of Galvanized Coating in Alkaline Solution, Corrosion, 74: 1421 (2018).
[52] Panizza M., Cerisola G., Removal of Colour and COD from Wastewater Containing Acid Blue 22 by Electrochemical Oxidation, J. Hazard. Mater., 153: 83 (2008).
[53] Lakshmipathiraj P., Bhaskar Raju G., Sakai Y., Takuma Y., Yamasaki A., Kato S., Kojima T., Studies on Electrochemical Detoxification of Trichloroethene (TCE) on Ti/IrO2–Ta2O5 Electrode from Aqueous Solution, Chem. Eng. J., 198199: 211 (2012).
[54] Jojoa-Sierra S.D., Silva-Agredo J., Herrera-Calderon E., Torres-Palma R.A., Elimination of the Antibiotic Norfloxacin in Municipal Wastewater, Urine and Seawater by Electrochemical Oxidation on IrO2 Anodes, Science of the Total Environment, 575: 1228 (2017).
[55] Sridhar R., Sivakumar V., Prakash Maran J., Thirugnanasambandham K., Influence of Operating Parameters on Treatment of Egg Processing Effluent by Electrocoagulation Process, Int. J. Environ. Sci. Technol., 11: 1619 (2014).
[56] El-Ashtoukhy E.S.Z., Amin N.K., Abd El-Latif M.M., Bassyouni D.G., Hamad H.A., New İnsights into the Anodic Oxidation and Electrocoagulation Using a Self-Gas Stirred Reactor: A Comparative Study for Synthetic CI Reactive Violet 2 Wastewater, J. Clean. Prod., 167: 432 (2017).
[58] Fil B.A., Günaslan S., Electrooxidation Treatment of Slaughterhouse Wastewater: İnvestigation of Efficiency of Ti/Pt Anode, Part. Sci. Technol., 41(4): 496-505 (2022).
[59] Baddouh A., Bessegato G.G., Rguiti M.M., El Ibrahimi B., Bazzi L., Hilali M., Zanoni M.V.B., Electrochemical Decolorization of Rhodamine B Dye: Influence of Anode Material, Chloride Concentration and Current Density, J. Environ. Chem. Eng., 6: 2041 (2018).
[60] Belal R.M., Zayed M.A., El-Sherif R.M., Abdel Ghany N.A., Advanced Electrochemical Degradation of basic Yellow 28 Textile Dye Using IrO2/Ti Meshed Electrode in Different Supporting Electrolytes, J. Electroanal. Chem., 882: 114979 (2021).
[62] Malpass G.R.P., Miwa D.W., Mortari D.A., Machado S.A.S., Motheo A.J., Decolorisation of Real Textile Waste Using Electrochemical Techniques: Effect of the Chloride Concentration, Water Res., 41: 2969 (2007).
[63] Miwa D.W., Malpass G.R.P., Machado S.A.S., Motheo A.J., Electrochemical Degradation of Carbaryl on Oxide Electrodes, Water Res., 40: 3281 (2006).
[64] Viana D.F., Salazar-Banda G.R., Leite M.S., Electrochemical Degradation of Reactive Black 5 with Surface Response and Artificial Neural Networks Optimization Models, Sep. Sci. Technol., 53: 2647 (2018).
[66] Singh S., Lo S.L., Srivastava V.C., Hiwarkar A.D., Comparative Study of Electrochemical Oxidation for Dye Degradation: Parametric Optimization and Mechanism İdentification, Journal of Environmental Chemical Engineering, 4: 2911 (2016).
[67] Rodríguez F.A., Mateo M.N., Aceves J.M., Rivero E.P., González I., Electrochemical Oxidation of Bio-Refractory Dye in a Simulated Textile İndustry Effluent Using DSA Electrodes in a Filter-Press Type FM01-LC Reactor, Environ. Technol., 34: 573 (2013).
[68] Iskurt C., Keyikoglu R., Kobya M., Khataee A., Treatment of Coking Wastewater by Aeration Assisted Electrochemical Oxidation Process at Controlled and Uncontrolled İnitial pH Conditions, Separation and Purification Technology, 248: 117043 (2020).
[72] Rahmani A.R., Godini K., Nematollahi D., Azarian G., Electrochemical Oxidation of Activated Sludge by Using Direct and İndirect Anodic Oxidation, Desalin. Water Treat., 56: 2234 (2015).
[73] Asaithambi P., Govindarajan R., Yesuf M.B., Alemayehu E., Removal of Color, COD and Determination of Power Consumption from Landfill Leachate Wastewater Using an Electrochemical Advanced Oxidation Processes, Sep. Purif. Technol., 233: 115935 (2020).
[74] He W., Liu Y., Ye J., Wang G., Electrochemical Degradation of Azo Dye Methyl Orange by Anodic Oxidation on Ti4O7 Electrodes, J. Mater. Sci. Mater. Electron., 29: 14065 (2018).
[75] Wang G., Liu Y., Ye J., Lin Z., Yang X., Electrochemical Oxidation of Methyl Orange by a Magnéli Phase Ti4O7 Anode, Chemosphere, 241: 125084 (2020).
[76] Kumar D., Gupta S.K., Electrochemical Oxidation of Direct Blue 86 Dye Using MMO Coated Ti Anode: Modelling, Kinetics and Degradation Pathway, Chem. Eng. Process. - Process Intensif., 181: 109127 (2022).
[77] Jiani L., Zhicheng X., Hao X., Dan Q., Zhengwei L., Wei Y., Yu W., Pulsed Electrochemical Oxidation of Acid Red G and Crystal Violet by PbO2 Anode, J. Environ. Chem. Eng., 8: 103773 (2020).
[79] Brillas E., Sires I., Arias C., Cabot P.L., Centellas F., Rodriguez R.M., Garrido J.A., Mineralization of Paracetamol in Aqueous Medium by Anodic Oxidation with a Boron-Doped Diamond Electrode, Chemosphere, 58: 399 (2005).
[80] Panizza M., Barbucci A., Ricotti R., Cerisola G., Electrochemical Degradation of Methylene Blue, Sep. Purif. Technol., 54: 382 (2007).
[81] Jiang Y., Zhao H., Liang J., Yue L., Li T., Luo Y., Liu Q., Lu S., Asiri A.M., Gong Z., Sun X., Anodic Oxidation for the Degradation of Organic Pollutants: Anode Materials, Operating Conditions and Mechanisms. A Mini Review, Electrochem. commun., 123: 106912 (2021).
[82] Aladaǧ E., Fil B.A.A., Boncukcuoǧlu R., Sözüdoǧru O., Yilmaz A.E.E., Adsorption of Methyl Violet Dye a Textile Industry Effluent onto Montmorillonite-Batch Study, J. Dispers. Sci. Technol., 35(12): 1737-1744 (2014).
[84] Galvan D., Orives J.R., Coppo R.L., Silva E.T., Angilelli K.G., Borsato D., Determination of the Kinetics and Thermodynamics Parameters of Biodiesel Oxidation Reaction Obtained from an Optimized Mixture of Vegetable Oil and Animal Fat, Energy & Fuels, 27: 6866 (2013).
[85] Kamranifar M., Naghizadeh A., Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 127-137 (2017).
[86]  Spacino K.R., Borsato D., Buosi G.M., Chendynski L.T., Determination of Kinetic and Thermodynamic Parameters of the B100 Biodiesel Oxidation Process in Mixtures with Natural Antioxidants, Fuel Process. Technol., 137: 366 (2015).
[87] Oguz E., Equilibrium İsotherms and Kinetics Studies for the Sorption of Fluoride on Light Weight Concrete Materials, Colloids Surfaces A Physicochem. Eng. Asp., 295: 258 (2007).
[88] Lal K., Garg A., Utilization of Dissolved İron as Catalyst during Fenton-Like Oxidation of Pretreated Pulping Effluent, Process Saf. Environ. Prot., 111: 766 (2017).
[89] Candia-Onfray C., Espinoza N., Sabino da Silva E.B., Toledo-Neira C., Espinoza L.C., Santander R., García V., Salazar R., Treatment of Winery Wastewater by Anodic Oxidation Using BDD Electrode, Chemosphere, 206: 709 (2018).