Computational Analysis of Electrochemical Behavior and Fullerene-Based Adsorbents for Extraction of Acetamiprid

Document Type : Research Article

Authors

1 Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, I.R. IRAN

2 Department of Physical Chemistry, Faculty of Science, University of Jiroft, Jiroft, I.R. IRAN

Abstract

Using density functional methods, the results of the analysis of traditional adsorbents and adsorbents based on nanosized particles capable of trapping acetamiprid molecules in fruits and plants are presented. We considered the following interacting compounds: acetamiprid@ fullerene C20, a fragment of the structure of activated carbon. We determined the optimal configurations of the corresponding interacting structures, estimated their electrochemical parameters and binding energies, and chemical potentials. The highest binding energy was obtained -0.70 eV adsorbed on C20 fullerene. At the same time, the energy gaps between the occupied HOMO and unoccupied LUMO molecular states were calculated, which makes it possible to characterize the reactivity and stability of molecules. acetamiprid has rather large gaps HOMO-LUMO. Using the concept of the electronic localization function, we found that a covalent bond is formed between acetamiprid and C20 fullerene with a sufficiently high degree of electron localization in the bond region. In other cases, the value of the localization function indicates the absence of a chemical bond between the compounds. The proposed study gives recommendations on the adsorption of acetamiprid for further electrochemical analysis, which will allow them to be found in fruits and plants by gas chromatography using a flame ionization detector.

Keywords

Main Subjects


[1]   Babic K., Tomašic V., Gilja V., Le Cunff J., Gomzi V., Pintar A., Žerjav G., Kurajica S., Duplancic M., Zelic I.E., Pavicic T.V., Grcic I., Photocatalytic Degradation of Imidacloprid in the Flat-Plate Photoreactor under UVA and Simulated Solar Irradiance Conditions - The Influence of Operating Conditions, Kinetics and Degradation Pathway,
J. Environ. Chem. Eng., 9: 1–14 (2021).
[3]   Ullah F., Gul H., Tariq K., Desneux N., Gao X., Song D., Acetamiprid Resistance and Fitness Costs of Melon Aphid, Aphis Gossypii: An Age-Stage, Two-Sex
Life Table Study
, Pestic. Biochem. Physiol., 171: (2021).
[4]   Lu W., Li J., Sheng Y., Zhang X., You J., Chen L., One-Pot Synthesis of Magnetic Iron Oxide Nanoparticle-Multiwalled Carbon Nanotube Composites for Enhanced Removal of Cr(VI) from Aqueous Solution, J. Colloid Interface Sci., 505:  1134–1146 (2017).
[5]   Jiang L.L., Lu X., Xie C.M., Wan G.J., Zhang H.P., Youhong T., Flexible, Free-Standing TiO2-Graphene-Polypyrrole Composite Films as Electrodes for Supercapacitors, J. Phys. Chem. C., 119: (2015).
[6]   Zhang J., Yan S., Fu L., Wang F., Yuan M., Luo G., Xu Q., Wang X., Li C., Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2, Cuihua Xuebao/Chinese J. Catal., 32:  983–991 (2011).
[7]   Wang L., Liu Y., Wang C., Zhao X., Mahadeva G.D., Wu Y., Ma J., Zhao F., Anoxic Biodegradation of Triclosan and the Removal of its Antimicrobial Effect in Microbial Fuel Cells, J. Hazard. Mater., 344:  669–678 (2018).
[8]   García-Hernández E., Palomino-Asencio L., Catarino-Centeno R., Nochebuena J., Cortés-Arriagada D., Chigo-Anota E., In Silico Study of the Adsorption of Acetamiprid on Functionalized Carbon Nanocones, Phys. E Low-Dimensional Syst. Nanostructures., 128:  114516 (2021).
[11] Nazarali Z., Ahmadi S.A., Ghazanfari D., Sheikhhosseini E., Razavi R.,  Investigation of Flutamide@ethyleneimine as Drug Carrier by Nanocone and Nanotube Theoretically, Iran. J. Chem. Chem. Eng. (IJCCE), 41(10): 3275-3281 (2022).
[12] Tavakoli S., Ahmadi S.A., Ghazanfari D., Sheikhhosseini E., Theoretical Investigation of Functionalized Fullerene Nano Carrier Drug Delivery of Fluoxetine, J. Indian Chem. Soc., 99: 100561 (2022).
[13] Najibzade Y., Sheikhhosseini E., Akhgar M.R., Ahmadi S.A., Absorption of Tranylcypramine on C60 Nanocage: Thermodynamic and Electronic Properties, Pak. J. Pharm. Sci., 35: 815-818 (2022).
[14] Razavi R., Kaya S., Zahedifar M., Ahmadi S.A., Simulation and Surface Topology of Activity of Pyrazoloquinoline Derivatives as Corrosion Inhibitor on the Copper Surfaces, Sci. Rep., 11: 12223 (2021).
[15] Taillebois E., Alamiddine Z., Brazier C., Graton J., Laurent A.D., Thany S.H., Le Questel J.Y., Molecular Features and Toxicological Properties of Four Common Pesticides, Acetamiprid, Deltamethrin, Chlorpyriphos and Fipronil, Bioorganic Med. Chem., 23: 1540–1550 (2015).
[16] Le Questel J.Y., Graton J., Cerón-Carrasco J.P., Jacquemin D., Planchat A., Thany S.H., New Insights on the Molecular Features and Electrophysiological Properties of Dinotefuran, Imidacloprid and Acetamiprid Neonicotinoid Insecticides, Bioorganic Med. Chem., 19: 7623–7634 (2011).
[17] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A.Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, (2009).
[18] Tirado-Rives J., Jorgensen W.L., Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules, J. Chem. Theory Comput., 4: 297–306 (2008).
 [20] Badran H.M., Eid K.M., Baskoutas S., Ammar H.Y., Mg12O12 and Be12O12 Nanocages as Sorbents and Sensors for H2S and SO2 Gases: A Theoretical Approach, Nanomaterials., 12: 1757 (2022).
[21] Gimaldinova M.A., Maslov M.M., Katin K.P., Electronic and Reactivity Characteristics of CL-20 Covalent Chains and Networks: A Density Functional Theory Study, Cryst. Eng. Comm., 20: 4336–4344 (2018).
[22] Bagsican F.R., Winchester A., Ghosh S., Zhang X., Ma L., Wang M., Murakami H., Talapatra S., Vajtai R., Ajayan P.M., Kono J., Kawayama I., Tonouchi M., Study on Local Oxygen Absorption/Desorption Dynamics onto 2D Materials Probed by Potential-Sensitive THz Radiation, "Opt. InfoBase Conf. Pap." (2014).