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ABSTRACT: Pure and eutectic mixtures of fatty acids are desirable Phase Change Materials (PCMs) 

for low/medium Thermal Energy Storage (TES) applications because of their high density of energy 

storage, biodegradability, sustainability, and compatibility with existing systems. In the current study, 

thermodynamics and the experimental standpoint of phase equilibrium for 10 ternary mixtures of fatty 

acids were considered. In this regard, an approach based on the Wilson model was developed  

to predict the melting temperature of fatty acids to predict the eutectic points of ternary mixtures 

including Capric acid, Undecanoic acid, pentadecanoic acid, Margaric and Stearic acid. It indicated 

that the eutectic points were close to the melting temperature of lower density compounds and  

for Capric+Undecanoic+Pentadecanoic the melting point has the minimum values among the other 

nine mixtures and equals 281.0 °C. A comparison of the derivate activity model with the experimental 

data represented deviations of less than 1% between experimental and predicted values. 
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INTRODUCTION 

Because of the increasing complexity and evolution of 

the international community, energy in the present century 

plays a key role in the economics and politics of a country, 

and accurate forecasting of the energy sector outlook and 

adopting appropriate solutions are key to maintaining 

political and economic stability. Over the past three 

decades, energy shortages and high prices as well as 
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concerns about environmental problems have made it 

necessary to avoid energy waste. In addition, the need for 

additional TES and eliminating the interval between 

consumption and energy production has been increasingly 

addressed [1]. PCMs are one of the most efficient tools  

for TES [2-8]. By changing the phase of these materials, 

the thermal energy can be stored as latent heat. In studies 
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on phase change materials, pure and eutectic mixtures  

of fatty acids have received greater attention due to their 

premiere properties. An important advantage of fatty acids 

is that they are the derivative of common animal oils and 

vegetables which, despite the scarcity of fuel sources, 

makes it possible to provide a safe and continuous supply. 

Ease of use according to the requirements is another 

feature of these materials [3-8]. On the other hand, fatty 

acid melting points for some applications like heating and 

cooling are very high and can be up to 30 degrees above 

the optimal temperature in the building [9]. Therefore, 

saturated fatty acid mixtures with lower temperatures have 

been considered [10]. For example, the melting 

temperatures of myristic acids and palmitic are 61 and 52 °C, 

respectively, which is a high temperature for storage.  

The temperature of melting for the eutectic mixture, 

however, is about 42 °C, which is suitable for solar energy 

storage [11].  

Overall, it can be said that the thermodynamic and 

kinetic criteria of this group of materials are suitable for 

the storage of latent heat at low temperatures [6, 11, 12]. 

Therefore, the increasing use of the fatty acids eutectic 

mixture for TES necessitates further and more serious 

studies. In most cases with three-component mixtures,  

the melting temperature at the eutectic point is lower than 

the melting temperature of not only each of the pure 

materials but also the eutectic points of all binary 

compounds of these three substances. Therefore, three-component 

mixtures (due to the low melting point of their mixture) 

can be much more functional than two-component and 

single-component mixtures. 

To apply these materials in the industry, quantities such 

as melting point and the fusion latent heat must be 

determined. Because of the differences between 

experimental results [14, 15] reported in different articles 

and the limited information on the thermal properties  

of eutectic mixtures [6], accurate and reliable experiments 

are needed. The development of thermodynamic activity 

models can aid the estimation of thermal properties and 

phase behavior of fatty acid mixtures [16, 17].  

Most thermodynamic models have been improved  

to predict only the eutectic point [17-19], yet it is crucial 

to predict the pre-eutectic point, too, where the component 

is formed in the solid phase [20, 21].  

Many investigations have been done on preparing and 

characterizing the binary mixture of phase change 

materials [22-28], but studies on the ternary mixture of 

fatty acids are still limited [29, 30]. 

Mirpoorian et al. studied the S-L phase equilibrium for 

binary mixtures of a group of fatty acids. They developed 

NRTL, UNIQUAC, and Wilson activity models to 

determine eutectic points and estimate melting 

temperature as functions of mole fraction [31, 32]. They 

found a good agreement between predictions from 

thermodynamic models and experimental results.  

Parveen et al [33] developed thermochemical 

characterizing and considered the eutectic mixture 

biological safety of fatty acids as a new form for temperature 

sensitive potential of drug release because of their attractive 

and inimitable characteristics like consistency, safety, and 

facility of accessibility. Zhou et al [34] prepared some 

binary eutectic mixtures of fatty acids by use decanoic acid, 

dodecanoic acid, tetradecanoic acid, hexadecanoic acid,  

and octadecanoic acid as raw materials for latent heat TES. 

Results showed that reported fatty acid binary eutectic 

mixtures were worthy as TES materials for systems with 

low temperatures. Fan et al [35] studied the thermophysical 

properties, consistency, and dependability of dodecanoic 

acid binary eutectic mixtures for the efficiency of building 

energy. They reported that dodecanoic acid binary eutectic 

phase change materials showed great thermal properties and 

chemical structure after five hundred cold and hot cycles. 

Ma et al [36], because of the prompt need for latent heat 

TES in the field of cryogenic and the application of 

renewable energy resources, predicted the eutectic mass 

ratios and thermophysical properties of three novel eutectic 

PCMs (methyl dodecanoic/dodecanoic acid, methyl 

dodecanoic/tetradecanoic acid, and methyl dodecanoic/ 

hexadecanoic acid) which are validated and determined 

through the hot disk method and DSC (differential scanning 

calorimetry).  

In the current study, the thermodynamic and 

experimental aspects of S-L phase equilibrium for  

10 tertiary mixtures of five fatty acids, comprising capric 

acid, undecanoic acid, pentadecanoic acid, heptadecanoic 

(margaric) acid, and octadecanoic (stearic) acid, using  

the DSC technique studied. The mixtures of Fatty acids 

PA+MA+SA, UA+MA+SA, UA+PA+SA, UA+PA+MA, 

CA+MA+SA, CA+PA+SA, CA+PA+MA, CA+UA+SA, 

CA+UA+MA and CA+UA+PA were investigated, and  

the experimental results of the 10 mixtures were correlated 

by using the Wilson [37] activity model. 
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EXPERIMENTAL SECTION 

Materials 

All materials were purchased from Merck Company 

with more than 98% purity.  

The thermophysical properties of the fatty acids  

were measured by DSC (DSC-60 Shimadzu, Japan), 

illustrated in Table 1 as mentioned in previous work [38] 

 

Preparation of ternary mixtures 

In this study, pseudo-binary mixtures were considered 

ternary mixtures. A binary eutectic mixture of two fatty 

acids (A&B, for example) and another fatty acid (C, for 

example) were considered as the pseudo-first and pseudo-

second component, respectively. The mass ratio of A  

and B in the pseudo-first components (binary mixtures  

of four considered fatty acids) as well as latent heat  

and melting temperature in eutectic points were obtained 

from Mirpoorian et al. and shown in Table 2 [31, 32]. 

Initially, binary mixtures were prepared as pseudo-first 

components according to the ratios listed in Table 2  

and then mixed with third components in different 

combination ratios. For example, CA and UA were blended  

in a 0.457:0.543 ratio; then this pseudo-single component 

was mixed with PA in different compositions. 

The thermal properties of the prepared mixtures were 

measured by DSC tests performed by use of Diamond DSC 

(Perkin Elmer, USA), under N2, with the heating and 

cooling rate of 10 °C/min, in the range of 268-323 K.  

The peak of DSC curves represents the melting point  

of the materials, and the λ was measured using the area 

below each peak. 

 

Eutectic point determination 

In the DSC heating curve of eutectic mixtures, only  

one peak appears, while non-eutectic binary mixtures have 

two separate peaks, each corresponding to one of the 

components of the mixture. As mentioned above, pseudo-

binary mixtures with different ratios were synthesized,  

and their DSC heating curves were plotted.  

To determine the pseudo-binary mixture eutectic point, 

the temperature changes of these two peaks (T1 and T2) 

versus the mass ratio of the pseudo-second component (X) 

were plotted on a graph. The intersection of these two curves 

gave the X in the eutectic mixture. 

For all pseudo-binary (ternary) mixtures, the 

composition of the components at the eutectic point  

was obtained using the method presented in Table 3. 

Table 1: Fatty acid thermal properties 

Material Tmelt (K) λ* (J/mol) 

Capric acid 304.8 27.79 

Undecylenic acid 301.7 25.98 

Pentadecanoic acid 325.7 41.53 

Margaric acid 334.2 51.33 

Stearic acid 342.7 61.21 

* λ: latent heat 

 

Table2: Thermophysical properties of binary fatty acid system 

[31, 32] 

Mixtures Mass ratio Teutectic (K) λ (kJ/mol) 

Comp. 1 Comp. 2 Comp.1:Comp2   

Capric 

acid(CA) 

Undecylenic 

acid(UA) 
0.457:0.543 284.7 25.04 

Capric 

acid(CA) 

Pentadecanoic 

acid(PA) 
0.764:0.236 297.5 30.29 

capric 

acid(CA) 

Margaric 

acid(MA) 
0.869:0.131 300.9 30.53 

Undecylenic 

acid(UA) 

Pentadecanoic 

acid(PA) 
0.794:0.206 295.0 27.92 

Undecylenic 

acid(UA) 

Margaric 

acid(MA) 
0.889:0.111 298.2 27.91 

Pentadecanoic 

acid(PA) 

Margaric 

acid(MA) 
0.643:0.357 316.5 43.30 

 

Table 3: The composition of the eutectic pseudo binary 

mixtures  

Pseudo-binary mixture Mass ratio % 

Comp. 1 Comp. 2 Comp. 1:Comp. 2 

(CA+UA) PA 90.0:10.0 

(CA+UA) MA 96.3:3.7 

(CA+UA) SA 98.0:2.0 

(CA+PA) MA 91.4:8.6 

(CA+PA) SA 95.5:0.045 

(CA+MA) SA 94.3:5.7 

(UA+PA MA 92.6:7.4 

(UA+PA SA 96.2:3.8 

(UA+MA) SA 95.3:4.7 

(PA+MA) SA 84.5:15.5 

 

Eutectic pseudo-binary (ternary) mixtures based on the ratios 

shown in Table 3 were prepared, and DSC tests were carried 

out on them using the previously explained procedure. 

 

THERMODYNAMIC MODEL 

General model for liquid phase 

For the binary mixture of fatty acids, the T-x diagram, 

which represents the solid-liquid equilibrium, consisted of 

three regions. 
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Region I is illustrated by the liquid line, where the 

second component is the solid phase; Region II is formed 

when the first component is in the solid phase; and Region 

III, if any, is where the solid phase is the compound  

of components 1 and 2. In this study, no presence of  

a component in the solid phase was observed. Thus, 

Region III was ignored.  

The following equations show the S-L phase 

equilibrium for fatty acid binary or pseudo-binary 

mixtures [39]: 

 

Region I 

The melting temperature of mixture in region I  

is presented in Eq. (1): 

𝑇 =
𝛥ℎ𝑓2

𝛥ℎ𝑓2

𝑇𝑓2
−𝑅.𝑙𝑛 [(1−𝑥1).𝛾2

𝑙 ]
     (1) 

 

Region II 

The melting temperature of mixture in region II  

is presented in Eq. (2): 

𝑇 =
𝛥ℎ𝑓1

𝛥ℎ𝑓1

𝑇𝑓1
−𝑅.𝑙𝑛[𝑥1.𝛾1

𝑙 ]
     (2) 

Where Hfi is latent heat of fusion, Tfi is melting 

temperature, 𝛾𝑖
𝑙 is activity coefficient of component i  

in the liquid phase; x1 is the molar fraction of first 

component, and T is the mixture melting temperature.  

In the above equations, activity coefficients 𝛾𝑖
𝑙 are  

a function of T and 𝑥𝑖
𝑙. Therefore, temperature is implicit 

and should be found using the iterative approach. 

 

Latent Heat of Fusion for Pseudo-Binary Blends 

Latent heat of fusion for the mixtures of fatty acids  

can be achieved by using the Eq(3) [36]:  

𝐻𝑚 = 𝑇𝑚 ∑ [
𝑋𝑖𝐻𝑖

𝑇𝑖
+ 𝑋𝑖(𝐶𝑃𝐿𝑖 − 𝐶𝑃𝑆𝑖) 𝑙𝑛

𝑇𝑚

𝑇𝑖
]𝑛

𝑖=1   (3) 

Wherein Hm is the latent heat of fusion for the binary 

blends in J/mol and CPSi and CPLi are the specific heat  

at constant pressure of component i at solid and liquid 

phases, respectively. For long-chain fatty acid compounds, 

it can be ignored from (CPLi- CPSi) versus sensible heat 

term, therefore Hm is (Eq(4)): 

𝐻𝑚 = 𝑇𝑚 [
𝑥1𝛥ℎ𝑓1

𝑇𝑓1
+

(1−𝑥1)𝛥ℎ𝑓2

𝑇𝑓2
]                  (4) 

Wilson model for liquid phase 

Wilson [37] proposed the following equation for the 

excess Gibbs free energy of a binary mixtures as dedicated 

in Eq. (5). 

𝑔𝐸

𝑅𝑇
= −𝑥1 𝑙𝑛( 𝑥1 + 𝛬12𝑥2) − 𝑥2 𝑙𝑛( 𝑥2 + 𝛬21𝑥1)  (5) 

The derivative activity coefficients from Wilson 

equation are presented in Eqs (6), (7): 

ln γ
1

=- ln ( x1+Λ12x2)+x2 (
Λ12

x1+Λ12x2
-

Λ21

Λ21x1+x2
)  (6) 

ln γ2 =- ln ( x2+Λ21x1)-x1 (
Λ12

x1+Λ12x2
-

Λ21

Λ21x1+x2
)   (7) 

In this study, according to Eqs (1), (2), (6), and (7),  

the liquefied phase is modeled on the basis of the Wilson 

model for two different equilibrium regions (Eqs (8), (9)). 

 

Region I 

T1=
Δhf2

Δhf2
Tf2

-R[ln (1-x1)- ln (x2+Λ21x1)-x1(
Λ12

x1+Λ12x2
-

Λ21
Λ21x1+x2

)]
    (8) 

 

Region II 

𝑇2 =
𝛥ℎ𝑓1

𝛥ℎ𝑓1

𝑇𝑓1
−𝑅[𝑙𝑛 𝑥1−𝑙𝑛(𝑥1+𝛬12𝑥2)+𝑥2(

𝛬12
𝑥1+𝛬12𝑥2

−
𝛬21

𝛬21𝑥1+𝑥2
)]

    (9) 

 

Eutectic Point 

Because of no existence of Region III in the 

investigated mixtures (v1<0, v2<0 and ∆GR
ᵒ ≥0),  

the mole fraction of the eutectic point can be achieved 

by using Eq. (10). 

Δhf1

Δhf1

Tf1
-R [ln x1- ln ( x1+Λ12(1-x1))+x2 (

Λ12

x1+Λ12(1-x1)
-

Λ21

Λ21x1+(1-x1)
)]

= 

Δhf2

Δhf2
Tf2

-R[ln (1-x1)- ln (x2+Λ21x1)-x1(
Λ12

x1+Λ12(1-x1)
-

Λ21
Λ21x1+(1-x1)

)]
               (10) 

 

RESULTS AND DISCUSSIONS 

In this study, ten ternary mixtures as pseudo-binary 

mixtures of fatty acids were considered.  

Fig. 1 shows the DSC curves of heating for these 

eutectic mixtures. 

As can be seen from Fig. 1, for all ternary 

mixtures of fatty acids, only one long peak appeared 

in the DSC curve. 
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Table 4: The theoretical (Wilson) and experimental eutectic points of ternary fatty acid system 

Tertiary mixture Ternary mass ratio % 
Theoretical  

eutectic points (K) 

Experimental  

eutectic points (K) 

Comp. 1 Comp. 2 Comp. 3 Comp. 1:Comp. 2:Comp 3   

CA UA PA 41.1:48.9:10 282.2 281.0 

CA UA MA 44.0:52.3:3.7 283.7 282.4 

CA UA SA 44.8:53.2:2.0 284.4 283.5 

CA PA MA 69.8:21.7:8.6 295.0 294.0 

CA PA SA 72.9:22.9:4.5 296.5 295.1 

CA MA SA 82.0:12.4:5.7 299.7 298.5 

UA PA MA 73.9:18.7:7.4 294.2 295.3 

UA PA SA 76.8:19.4:3.8 294.4 296.2 

UA MA SA 85.2:10.1:4.7 297.8 298.5 

PA MA SA 54.8:29.7:15.5 313.7 315.1 

 

Table 5: Computed parameters of Wilson for ten investigated binary mixtures of fatty acids  

pseudo -binary mixture Eq. (8) Eq. (9) 

Comp. 1 Comp. 2 Ʌ12 Ʌ21 Ʌ12 Ʌ21 

(CA+UA) PA 1.0154 0.983 0.983 1.0194 

(CA+UA) MA 1.0267 0.974 0.973 1.0271 

(CA+UA) SA 1.0215 0.991 0.982 1.0259 

(CA+PA) MA 1.0214 0.962 0.966 1.0321 

(CA+PA) SA 1.0254 0.971 0.978 1.0211 

(CA+MA) SA 1.0277 1.008 1.015 0.994 

(UA+PA) MA 0.997 1.011 1.009 1.024 

(UA+PA) : SA 1.0357 0.973 0.974 1.0269 

(UA+MA) SA 0.989 0.952 1.052 1.0061 

(PA+MA) SA 1.019 0.992 0.984 1.0212 

 
Fig. 1: DSC curves of heating for ten ternary components 

 

Applying the Wilson activity equation to the 

ternary (pseudo binary) systems of fatty acids, the 

eutectic temperatures and the corresponding mixing 

proportions of (CA + UA): PA, (CA + UA): MA, (CA 

+ UA): SA, (CA + PA): MA, (CA + PA): SA, (CA + 

MA): SA, (UA + PA): MA, (UA + PA): SA, (UA + 

MA): SA and (PA + MA): SA mixtures were obtained. 

Table 4 shows the comparisons between the calculated 

and experimental results. 

 

The ratio of components in the ternary mixture, shown 

in Table 4, is as follows; for example, as indicated in Table 2, 

the mass fraction at the eutectic temperature of CA - UA 

binary blend is 45.7:54.3. Hence, for the pseudo-binary 

mixture of (CA-UA) and PA, the experimental mass 

fraction at the eutectic temperature was 90:10 (CA + UA: 

PA), which is equivalent to the mass fraction of 

41.1:48.9:10 for the ternary system of CA: UA: PA  

The characteristics of the ternary mixture were similar 

to those of the pseudo-binary blend through the mentioned 

analysis, so the Wilson activity equation was applied  

to the tertiary fatty acid mixtures. According to  
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the experimental data, the Wilson activity equation 

estimated the S-L equilibrium phase transition.  

The Wilson model parameters for phase diagrams  

are presented in Table 5. 

Fig. 2(a-j) shows the results of comparisons of 

computed values using Eq. (8) and (9) for the Wilson 

equation along with the experimental data for CA + UA): 

PA, (CA + UA): MA, (CA + UA): SA, (CA + PA): MA, 

(CA + PA): SA, (CA + MA): SA, (UA + PA): MA, (UA + 

PA): SA, (UA + MA): SA and (PA + MA): SA pseudo-

binary blends, respectively. In these phase diagrams, X1 is 

the molar ratio of the pseudo-first component (the mixture 

in the eutectic composition of x1 and x2) and T is the 

melting temperature in Kelvin. 

Case study 1 (Fig. 2a) is the pseudo-binary blend  

of (CA: UA): PA in saturation form. The eutectic points 

of CA: UA as the pseudo-single component were retrieved 

from previous work [31] and equaled 284.7 K.  

The ternary melting temperature of CA: UA: PA is equal 

to 282.2 K at the eutectic point. As shown in Fig. 2a,  

the existence of the eutectic point was predicted at 0.900 

for x1(CA: UA) by Wilson. 

Case study 2 (Fig. 2b) is the pseudo-binary blend 

of (CA: UA): MA in saturation form. The eutectic 

points of CA: UA equaled 284.7 K. The ternary melting 

temperature of CA:UA: MA is equal to 283.7 K at the eutectic 

point. As shown in Fig. 2b, the existence of the eutectic point 

was predicted at 0.963 for x1(CA: UA) by Wilson. 

Case study 3 (Fig. 2c) is the pseudo-binary blend  

of (CA: UA): SA in saturation form. The eutectic points  

of CA: UA equaled 284.7 K. The ternary melting temperature 

of CA:UA: SA is equal to 284.4 K at the eutectic point.  

As shown in Fig. 2c, the existence of the eutectic point  

was predicted at 0.980 for x1(CA: UA) by Wilson. 

Case study 4 (Fig. 2d) is the pseudo-binary blend of 

(CA: PA): MA in saturation form. The eutectic points of 

CA: PA equaled 297.5 K. The ternary melting temperature 

of CA:PA: MA is equal to 295.0 K at the eutectic point.  

As shown in Fig. 2d, the existence of the eutectic point  

was predicted at 0.914 for x1(CA: PA) by Wilson. 

Case study 5 (Fig. 2e) is the pseudo-binary blend  

of (CA: PA): SA in saturation form. The eutectic points  

of CA: PA equaled 297.5 K. The ternary melting temperature 

of CA:PA: SA is equal to 296.5 K at the eutectic point.  

As shown in Fig. 2e, the existence of the eutectic point  

was predicted at 0.955 for x1(CA: PA) by Wilson. 

Case study 6 (Fig. 2f) is the pseudo-binary blend  

of (CA: MA): SA in saturation form. The eutectic points of CA: 

MA equaled 300.9 K. The ternary melting temperature  

of CA:MA: SA is equal to 279.7 K at the eutectic point.  

As shown in Fig. 2f, the existence of the eutectic point  

was predicted at 0.943 for x1(CA: MA) by Wilson. 

Case study 7 (Fig. 2g) is the pseudo-binary blend  

of (UA: PA): MA in saturation form. The eutectic points 

of UA: PA equaled 295.0 K. The ternary melting 

temperature of UA:PA: MA is equal to 294.2 K at the eutectic 

point. As shown in Fig. 2g, the existence of the eutectic 

point was predicted at 0.926 for x1(UA: PA) by Wilson. 

Case study 8 (Fig. 2h) is the pseudo-binary blend  

of (UA: PA): SA in saturation form. The eutectic points  

of UA: PA equaled 295.0 K. The ternary melting temperature 

of UA:PA: SA is equal to 294.4 K at the eutectic point.  

As shown in Fig. 2h, the existence of the eutectic point  

was predicted at 0.962 for x1(UA: PA) by Wilson. 

Case study 9 (Fig. 2i) is the pseudo-binary blend of  

(UA: MA): SA in saturation form. The eutectic points of UA: MA 

equaled 298.2 K. The ternary melting temperature of UA:MA: SA 

is equal to 297.8 K at the eutectic point. As shown in Fig. 2i, 

the existence of the eutectic point was predicted at 0.953  

for x1(UA: PA) by Wilson. 

Case study 10 (Fig. 2j) is the pseudo-binary blend  

of (PA: MA): SA in saturation form. The eutectic points  

of PA: MA equaled 316.5 K. The ternary melting temperature 

of PA:MA: SA is equal to 313.7 K at the eutectic point.  

As shown in Fig. 2j, the existence of the eutectic point  

was predicted at 0.845 for x1(UA: PA) by Wilson. 

The results indicate a good compromise for all ten 

case studies. 

Since the correlation of the experimental 

measurements was performed using the Wilson model,  

the Average Absolute Relative Deviations (AARD) of 

melting temperature values of pseudo-binary blends 

calculated from the Wilson activity model can be achieved 

by using the Eq (11): 

𝐴𝐴𝑅𝐷 = 100 ∑
|𝑇𝑒𝑥𝑝. 𝑖−𝑇𝑐𝑎𝑙𝑐.  𝑖|

𝑇𝑒𝑥𝑝. 𝑖

𝑁
𝑖=1 𝑁⁄                            (11) 

Where N is the number of data, Tcalc and Texp are the 

calculated and experimental temperatures, respectively. 

The deviation between the calculated and experimental 

data of melting temperatures for the ten investigated 

ternary mixtures by Wilson is presented in Table 6. 
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 2a) (CA+UA)(1) +PA(2) 

 
2b) (CA+UA)(1) + MA(2) 

 
2c) (CA+UA)1 + SA2 

 
2d) (CA+PA)1 + MA2 

 

2e) (CA+PA)1 + SA2 

 

2f) (CA+MA)1 + SA2 

 
2g) (UA+PA)1 + MA2 

 
2h) (UA+PA)1 + SA2 

 
2i) (UA+MA)1 + SA2 

 
2j) (PA+ MA)1 + SA2 

Fig. 2: Diagram for Solid - Liquid Equilibrium of Pseudo-Binary Blends 
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Table 6: AARD% of ten considered ternary Mixtures Correlated by Wilson Model 

Texp  /K X Tcalc  /K AARD %  Texp /K x Tcalc  /K AARD % 

(Capric:Undecylenic) + Pentadecanoic  (Capric:Undecylenic) + Margaric 

283.9 0.00 284.5 0.21  283.9 0.00 284.5 0.21 

281.0 0.10 282.2 0.43  282.4 0.04 283.7 0.46 

308.0 0.35 304.2 1.23  315.4 0.41 308.6 2.16 

316.2 0.70 318.1 0.60  325.0 0.70 319.7 1.63 

326.5 1.00 325.6 0.28  334.2 1.00 334.5 0.09 

Average  0.55  Average   0.91 

(Capric:Undecylenic) + Stearic  (Capric: Pentadecanoic) + Margaric 

283.9 P0.00 284.5 0.21  296.5 0.00 297.2 0.24 

283.5 0.02 284.4 0.32  294.0 0.09 295.0 0.34 

324.0 0.35 326.5 0.77  318.2 0.35 316.3 0.60 

332.5 0.70 336.8 1.29  331.0 0.70 327.9 0.94 

342.8 1.00 342.4 0.10  334.5 1.00 334.1 0.10 

Average  0.54  Average  0.44 

(Capric: Pentadecanoic) + Stearic  (Capric: Margaric) + Stearic 

296.5 0.00 297.2 0.24  302.0 0.00 300.4 0.53 

295.1 0.04 296.5 0.47  298.5 0.05 299.7 0.40 

328.0 0.35 326.5 0.46  326.0 0.25 321.5 1.38 

339.3 0.70 336.8 0.74  336.4 0.60 334.6 0.54 

342.1 1.00 342.4 0.09  340.8 0.85 342.3 0.44 

Average   0.40  Average  0.66 

(Undecylenic:Pentadecanoic) + Margaric  (Undecylenic:Pentadecanoic) + Stearic 

296.0 0.00 295.1 0.30  296.0 0.00 295.1 0.30 

294.2 0.075 293.3 0.31  295.3 0.03 294.4 0.30 

313.0 0.35 316.3 1.05  321.2 0.35 326.5 1.65 

325.0 0.70 327.6 0.80  333.2 0.70 336.8 1.08 

333.2 1.00 334.4 0.36  340.1 1.00 342.3 0.65 

Average  0.56  Average  0.80 

(Undecylenic:Margaric) + Stearic  (Pentadecanoic:Margaric) + Stearic 

297.0 0.00 298.2 0.40  316.2 0.00 316.5 0.09 

296.0 0.04 297.8 0.61  313.0 0.14 313.8 0.26 

321.2 0.35 326.5 1.65  325.2 0.35 326.5 0.40 

333.2 0.70 336.8 1.08  337.4 0.70 337.0 0.12 

340.1 1.00 342.3 0.65  343.0 1.00 342.3 0.20 

Average   0.88  Average  0.21 

Temperature measurement uncertainty : ± 0.5 K 

As can be observed from Table 6, the highest AARD% 

of the Wilson model is 0.91% for (Capric: Undecylenic) + 

Margaric acid ternary mixture. 

 

CONCLUSIONS 

In this study, the phase equilibrium of ten ternary 

mixtures of fatty acids for S-L phase equilibrium was 

determined. The equilibrium data and eutectic temperature 

of PA+MA+SA, UA+MA+SA, UA+PA+SA, 

UA+PA+MA, CA+MA+SA, CA+PA+SA, CA+PA+MA, 

CA+UA+SA, CA+UA+MA and CA+UA+PA ternary 

blends were measured. The eutectic and melting points 

were estimated from the obtained curves. The Wilson 

model was a derivation for estimating the melting 

temperature of fatty acid ternary blends as a function  

of the molar ratio. The experimental values of ten ternary 

blends were correlated using the Wilson activity equation. 

To compare the experimental data and melting point 
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values of Wilson, the average absolute deviations were 

calculated. The approaches in this study are generalizable 

to other three-component mixtures of fatty acids.  

The results revealed that the eutectic points were close  

to the melting temperature of lower density compounds 

and for CA:UA: PA, the mixture melting point is 281.0 °C 

and has the minimum values among the other nine ternary 

mixtures. A comparison of the derivate activity model with 

the experimental data represented AARD=0.91% between 

experimental and predicted values. Some of these 

recommended materials can be utilized for medium-

temperature energy storage applications. On the other 

hand, there is still a strong need for carrying out more 

research in this field for using PCMs in cold regions  

by using low melting temperature PCMs. 
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