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Abstract 

Environmental concerns about the contamination of groundwater and sea as a result of oil 

refining and transportation have encouraged scientists to seek sustainable and cost-effective 

methods to clean up these pollutants. Ammonia removal by green microalgae Chlorella 

vulgaris in media containing 10 mgL-1 ammonia and different concentrations of petroleum 

hydrocarbons was studied. The experiments were carried out in an airlift photobioreactor. 

Laboratory experiments showed that low concentrations of hydrocarbons not only did not 

inhibit ammonia removal but also had benefits for increasing the rates of biomass production 

and ammonia removal. Ammonia removal was obtained 100%. And hydrocarbon removal was 

obtained 100%. Based on the results obtained; microalgae utilize hydrocarbons as a carbon 

source. In addition, Chlorella vulgaris was a flexible and resistant microalgae to unfavorable 

conditions and quickly adapted to the low-contaminated culture solution. This feature increased 

the potential of Chlorella vulgaris to removal of ammonia and a wide range of hydrocarbons 

with different properties and toxicity. 
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1. Introduction 

Oil refining and transportation can cause considerable environmental problems and disrupt 

the populations of aquatic organisms. A complex mixture of various compounds, containing 

heavy metals, oil, grease, ammonia, alkanes, alkenes, alkynes, cycloalkanes, monoaromatics 

and polycyclic aromatic hydrocarbons, sulfide, phenols, sulfate, phosphate, nitrate, soluble 

solids, and suspended solids, is found in oily wastewater [1-6].  

Recently, low-cost and nature-friendly remediation methods are the essential environmental 

requirements to prevent the deterioration of water quality by removing pollutants. The toxicity 

and variability of petroleum hydrocarbon pollutants have made them difficult to treat. Physical 

and chemical methods, including storage, emulsifiers, solvent extraction, UV oxidation, 

chlorination, chemical dispersants, and adsorbents, are used to eliminate hydrocarbons. 

However, these techniques are often expensive and have low efficiency [4, 5, 7-11]. The 

combustion of the hydrocarbons becauses the release of pollutants such as CO, CO2, SOx, and 

NOx in the air, increasing the atmospheric temperature and warming the planet Earth. 

Phycoremediation is a cost-effective method by macro or microalgae for biological degradation 

or removal of hazardous organic and inorganic compounds, including hydrocarbons, heavy 

metals, and nutrients from wastewater, industrial flue gases, soil, and air with low carbon 

production [12-20]. This eco-friendly technique has been present since the 1950s [21]. Due to 

the sensitivity of microalgae to pollutant concentration, usually, this method is usually 

recommended for secondary wastewater treatment systems. If the algal biomass is not 

contaminated with toxic and dangerous compounds, it can be use to prepare animal and human 

feed, biological fuels, biogas, bioethanol, and valuable byproducts [22-27]. Microalgae are 

credited for their potential to biodegrade crude oil or fix CO2 from the atmosphere and discharge 

gases [28-31]. In the future, algae will be used as energy suppliers and small food packages in 

the space [32]. The absorption mechanism of algae is fascinating in some cases; for example, 

living and dead cells of Selenastrum capricornutum can absorb PAHs. The uptake rate is 

remarkably higher in living cells, and hydrocarbons are degraded only in living cells [33]. 

Usually, high concentrations of ammonia, crude oil, and hydrocarbons can reduce or stop the 

cell growth of algae by disturbing their metabolism. However, at low concentrations, Chlorella 

vulgaris can potentially remediate these contaminants [24, 29, 34-37]. Table 1 shows the 

chemical composition of this single-celled microalgae [38]. Chlorella vulgaris can be applied 

as a supplement for human and animal feed because of its high protein and nutrients. 

 



 

 

Table 1. Chemical composition of Chlorella vulgaris 

lipid protein carbohydrates nucleic acid 

14%-22% 51%-58% 12%-17% 4%-5% 

 

Polycyclic aromatic hydrocarbons have shown high resistance to biological degradation and are 

considered very dangerous for human health, aquatic organisms, water resources, and the marine 

environment [39-42]. Moreover, C. vulgaris has shown resistance against the toxicity of PAHs 

such as fluorene, phenanthrene, naphthalene, anthracene and pyrene and is recommended for 

treating wastewater containing low concentrations of these compounds [43-47]. Cultivation of 

C. vulgaris, ammonia removal, and biological degradation of hydrocarbons are influenced by 

complex interactions among temperature, molecular arrangement and carbon chain length, 

ammonia concentration, oxygen, microbiology, pH, growth conditions, light, and nutrient salts 

[48-51]. Asghari et al. [44] investigated various concentration of fluorene on the antioxidant 

systems and the growth parameters in the green microalga C. vulgaris. The results indicated the 

decline of growth parameters by increasing fluorine concentrations from 10 to 50 mg/L. 

Moreover, it showed that C. vulgaris has a high ability for the biodegradation of fluorine. Abreu 

et al. [52] showed high production of microalgal biomass and the utilization of carbohydrate 

when green microalgae C. vulgaris was cultivated under various mixotrophic conditions. 

Aslan et al. [53] investigated removal of nutrient by C. vulgaris at various concentrations of 

phosphorus and nitrogen. The results showed the quality of wastewater reduces with increasing 

concentration of nutrient, and the removal of nitrogen is more than phosphorus by algae culture. 

Park et al. [54] evaluated the ability of alga Scenedesmus for removal of nitrogen from effluent 

at high ammonium concentation and alkalinity. When the concentration of ammonium was at 

normal cultivation levels nitrate and ammonium were indistinguishable. By increasing 

ammonium concentration up to 100 ppm, the cell growth is continued. But at the concentration 

of 200–500 ppm ammonium, the cell density decreases to 70%. Bicarbonate as inorganic carbon 

was rapidly used that lead to cell growth. The presence of inorganic carbon is essential for 

ammonia removal. Cechinel e t al [55] examined Four macro-algae including Fucus spiralis, 

Ascophyllum nodosum, Pelvetia canaliculated, Laminaria hyperborea for metals removal from 

petrochemical wastewater. The wastewater had high conductivity because of various 

components including nickel, copper, sodium and etc.  the results showed high capacity in the 

adsorption of different metals, and L. hyperborean showed the best performance among other 

brown macro-algae. 



 

 

Hodges et al. [56] announced the production of 33.6 million barrels per day of wastewater of 

petroleum refining in 2017. One strategy was the use of microalgal for the production of high 

value material from petroleum refining wastewater. They investigated wastewater with nitrogen, 

phosphorus and suspended solids. The results showed high potential in the nitrogen, nutrients 

and suspended removal. Finally, they proposed production of feed, biomass-based fuels, and 

fertilizer as value-added products. 

Kim et al. [57] investigated the removal of ammonia, phosphorus and nitrogen and the rate of 

biomass growth by Chlorella sorokiniana as heterotrophic microalgae. The result showed feed 

with 80 mg/L as nitrogen sources has highest phosphorus and nitrogen removal and growth rate. 

While the growth rate decreased by concentration decline., The phosphorus and nitrogen 

removal and the growth rate was higher than nitrate with ammonia as a source of nitrogen. 

El-Sheekh et al. [29] investigated degradation of the crude oil by two green algae C. vulgaris 

and Scenedesmus obliquus. They showed the highest crude oil biodegradation rate at 0.5 and 

1% of oil. The use of 2% crude oil showed the highest growth of C. vulgaris while it was 

obtained at 0.5% for S. obliquus at the same heterotrophic conditions. 

Ma et al. [58] reported the cultivation of C. vulgaris in the wastewater including waste glycerol 

for nutrients removal from the wastewater and the production of lipids. The results show the 

improvement of the nutrient removal and the production of lipids from C. vulgaris. The optimal 

pretreated glycerol concentration was 10 g/L for C. vulgaris with 2.92 g/L of biomass 

concentration, lipid production of 163 mg/Ld, and 100% of ammonia removal.  

Kumar et al. [12] reported the cultivation of microalgae C. vulgaris in two modes; batch and  

continuous of industrial flue gas and sewage wastewater (SWW). They showed high COD 

removal above 78% and 42% in batch and continuous mode, respectively. Moreover, other 

nutrients showed above 75% and 55% of removal in batch and continuous mode, respectively. 

The CO2 removal was 64% and 72% in the bath and continuous mode. Both two modes 

indicated the highest production of biomass in mixotrophic and hetero cultivations. Kalhor et 

al. [24] used C. vulgaris for the biodegradation of petroleum hydrocarbons. The crude oil/water 

with concentration of 10 and 20 g/l was applied to the microalga treatment during the 7 and 14 

days. The results revealed the ability of C. vulgaris in crude oil hydrocarbons remediation during 

the 14 days. Increasing crude oil concentration observed the positive effects on the algal growth, 

and increased dry weight of C. vulgaris.  

In another study, C. vulgaris was used for the bioremediation of various types of PAHs [3-ring 

Anthracene (ANT), 2-ring Naphthalene (NAP), and 4-ring Pyrene (PYR)]. The maximum 

growth of C. vulgaris was obtained for PYR. Moreover, the lipid content declined for all PAHs 



 

 

treatments significantly. C. vulgaris showed high potential for the removal of three PAHs in 

about ~90–94 % ANT, ~90–92 % NAP and ~76 % PYR from the media during the 7 days [43]. 

Different types and configurations of open and closed culture systems and photobioreactors are 

designed for algae production. Large-scale stabilization or high-rate algal ponds reduce the 

energy required for wastewater treatment and microalgae cultivation costs, although; light 

penetration, low quality and the concentration of biomass production, seasonality, bacterial 

contamination, rapid cultivation, harvesting methods, and high evaporation losses are the main 

significant challenges that must overcome in open systems [59-63]. However, due to their low 

cost, open culture systems are an economical choice for large-scale algal cultivation. 

Photobioreactors and bubbling columns are common high-efficiency and practical closed 

systems for algae production [64]. Airlift photobioreactor is a well-mixed reactor with uniform 

nutrient distribution and algal biomass recirculation. Excessive shear forces and breaking 

bubbles cause harmful stress and reduce biomass productivity, so the mixing rate should be 

continuously controlled to prevent cell destruction [65].  

This type of photobioreactor has several advantages, such as the prevention of water evaporation 

and biomass settling, better control of some critical parameters contaning temperature, pH, light 

intensity and energy, CO2 concentration, and gas exchange between the cultivation water and 

air, efficient heat and mass transfer, easy scale-up, high nutrient removal efficiency, the 

prevention of the photoinhibition and photo-oxidation, high photosynthetic efficiency, sufficient 

mixing for biomass production and low cost [59, 66-69]. The use of a photobioreactor including 

a biofilter with the aerial microalga Trentepohlia aurea for ammonium removal from wastewater 

showed significant capacity after the pretreatment cycle by nitrogen-free BB medium supplied 

with magnesium [70]. Erbland et al. [71] showed high growth of Tetraselmis chuii by 

photobioreactor. 

Novoveská et al. [72] used Algae Systems LLC for treating above 50,000 gal/day of inlet raw 

municipal wastewater. A combination of aeration by photosynthetically prepared oxygen, the 

uptake of algae nutrients, and dewatering via flotation of suspended air rejected total 

phosphorus, nitrogen, and BOD with the amount of 93, 75%, and 92% from influent wastewater. 

Azhand et al. [73] reported the application of an airlift photobioreactor for the investigation of 

the effect of input gas velocity on the fixation of CO2 by C. vulgaris microalgae. This study 

indicated the growth of  C. vulgaris to 26.95×106 cells/mL. Moreover, CO2 removal reached 

94% at the lowest superficial gas velocity (1.88×10−3 m/s). 



 

 

This study investigated the airlift photobioreactor for the removal of ammonia and hydrocarbons 

by green microalgae Chlorella vulgaris in media containing 10 mg/L ammonia and different 

concentrations of petroleum hydrocarbons. 

 

2. Materials and Methods 

2.1. Wastewater preparation 

Wastewater effluent was collected from twenty different points of wastewater contaminated 

with ammonia and petroleum compounds. Based on the field investigations and testing of the 

pollutants in the evaporation ponds of the refinery, the effluent of six ponds was suitable for 

algae cultivation. Then ten samples were prepared with three repetitions and completely 

randomly in a period of 30 days. Due to algal growth in summer and winter, sampling was 

conducted in these seasons. The samples were stored in cool boxes (4°C) for the laboratory 

transportation. Due to its high resistance to the pollutants, C. vulgaris was observed in all 

locations with various concentrations of ammonia and petroleum compounds, so it was the best 

option for conducting our experiments. The water samples were filtered through 20µm and 

50µm mesh and autoclaved for 20 minutes at 121°C to kill interfering microorganisms and 

spores.  

2.2. Culture medium  

Microalgae were cultivated in a Konvey medium containing Na2EDTA (45 g/l), KNO3 (100 

g/l), NaH2PO4.4H2O (20 g/l), H3BO3 (33.6 g/l), FeCl3.6H2O (1.3 g/l), ZnCl2 (21 g/l), KNO3 

(100 g/l),MnCl2 (0.36 g/l), COCl2.6H2O (20 g/l), CuSO4.5H2O (20 g/l), (NH4)6Mo7O2.4H2O 

(9 g/l), Na2SiO3 (20 g/l), vitamin B1 and vitamin B12 (2 and 0.1 g/l, respectively). 

 

2.3. Airlift photobioreactor 

The experiments were carried out in a 20-liter airlift photobioreactor with a height of 1 m at 

25 ± 1°C. The system is equipped with a temperature and pH probe. The airlift photobioreactor 

is shown in Figure 1. Considering the growth of algae in spring and summer, sampling was 

done in these seasons and at a time interval of 15 days. The physiology of the algae sampled 

from the ponds was examined with the help of an OLYMPUS CX-31 microscope and 

microalgae such as chlorella pyrenoidosa, spirulina sp., Chlorella vulgaris, Oocystis pusillas, 

and Oscillatoria quadripunctulata were observed in the wastewater, due to the observation of 

chlorella vulgaris colonies in the places that had the most ammonia shocks, this alga was used 



 

 

to conduct experiment. Microalgae cultivation is influenced by reactor configuration and light 

intensity [13]. Uniform distribution of light distribution intensity and temperature are required 

to prevent photoinhibition and photo-oxidation, therefore; fluorescent lamps around the reactor 

were used as the light sources to provide uniform illumination of 5000 lx for the microalgae 

culture with dark/light of 12:12h during the C. vulgaris cultivation. This type of 

photobioreactor has an efficient heterogeneous flow. In addition, the 2.59×10-3 m/s of rich air 

(2% V/V CO2) provides a suitable mixing mechanism so the bubbles are distributed uniformly 

across the column, and the carbon dioxide is easily transferred from gas to water [52]. 

  

Figure 1. Schematic diagram of used airlift photobioreactor in this study. 

 

2.4. Biodegradation estimation 

The gas chromatograph with an FID detector (Agilent) with HP-5MS elastic silica capillary 

columns (30 m × 0.320 mm × 0.25 μm) was applied to characterize the prepared samples. The 

injection volume was 2 μl. Firstly, the temperature was 50 °C and then heated to 300 °C at a 

constant rate of 7 °C/min. GC–FID spectra were used to quantification of the compounds. 

 

3. Results and discussion 

The results showed in Table 2 are based on the analysis of four samples taken from the 

wastewater and show the contaminant level of petroleum hydrocarbons. Figure 2 and Figure 3 

show the gas chromatograph analysis of sample one for total petroleum hydrocarbons (TPH) 



 

 

and polycyclic aromatic hydrocarbons (PAHs), respectively. All compositions completely 

disappeared in all the concentrations of crude oil incubated with algae.  

 

Table 2. Contaminant level of TPH in wastewater 

  Compound 1 (µg/Lit) 2 (µg/Lit) 3 (µg/Lit) 4 (µg/Lit) 

  C10   146.99 3165.44 

  C11  182.12 323.34 533.02 

  C12  89.85 3409.73 698.90 

  C13 5.47 6.54 35.08 73.74 

  C14  6.02 1.54 439.75 

  C15  37.65 61.53 102.27 

  C16 2.52 29.13 104.86 55.59 

  C17  13.11 52.42 35.47 

  C18 0.56 31.39 4.29 23.34 

  C19 3.48 7.41 3.40 13.32 

  C20 0.76 1.65 0.11 7.74 

  C21 1.38 12.59 13.50 4.46 

  C22 0.77 10.82 18.22 2.01 

  C23 0.79 7.72 61.22 1.66 

  C24 0.92 6.61 2.32 0.57 

  C25 0.68 4.92 1.87  

  C26 0.58 1.03 2.81 1.41 

  C27   8.28  

  C28  3.37 0.94  

  C29 0.67    

  C30 6.04    

  C31 20.20    

  C32 83.22    

  C33 10.51    

  C34 1.80    

  C35 66.26    

Fluorene 0.72    

  Sum 207.34 451.92 4252.45 5158.69 

 

 



 

 

 

 

 

 

 

Figure 2. Gas chromatography analysis of TPH in sample one before (a) and after (b) phytoremediation. 
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Figure 3. Gas chromatography analysis of PAHs in sample one before (a) and after (b) phytoremediation. 

 

The results of this study indicated that the remediation process could be influenced by the initial 

contaminant concentrations and experimental conditions. The initial effluent containing 10 mg/l 

ammonia was injected into the airlift bioreactor. All experiments showed that residual ammonia 

decreased considerably with time, which coincided with rapid pH changes in the first 72 hours. 

Due to the use of an airlift photobioreactor, the effect of ammonia stripping was negligible. In 

addition, environmental, biological, and operational factors were controlled in optimal 

conditions. 

If the air velocity in the photobioreactor is not adjusted correctly, the dense biomass created will 

interfere with absorption. Despite the low and different concentrations of hydrocarbons, the 

complete removal of ammonia occurs at the end of the cultivation. As shown in Figure 4. A 

(b) 



 

 

phase lag period of 24 hours is observed at the beginning of the absorption process. total 

inorganic carbon uptake and  C. vulgaris  was not observed. During the phase lag, the 

concentration of ammonia did not decrease and the remediation of the hydrocarbons was almost 

equal to zero. After that, it decreased sharply with the rapid growth of phase (i.e., 24 to 120 h) 

and the ammonia concentration decreased to 50% after 72 hours. The performed analysis on 

samples NO.1 and NO.2 showed that all hydrocarbons were removed with a reasonable 

absorption rate at the experimental duration. However, no significant change in ammonia 

removal was observed due to the low concentration of pollutants. The result of other studies 

revealed that C. vulgaris is able in crude oil hydrocarbon remediation, and it has positive effects 

on the growth of the algal species [24]. The biodegradation ate was obtained 100%. While the 

result of degradation ate obtained 50% by El-Sheekh et al. [29] without the use of an airlift 

photobioreactor. The anthracene degradation by C. prothecoides in the conditions of autotrophic 

and heterotrophic were investigated. Degradation of anthracene was ~ 29% and 20% by light 

and by C. protothecoides under the autotrophic condition, respectively. Also, degradation of 

anthracene was 33.53% by C. protothecoides at the heterotrophic condition. C. protothecoides 

showed higher degradation ability and the resistance at heterotrophic condition than that at 

autotrophic conditions [46]. The effect of PAH such as phenanthrene (PHE) on C. vulgaris 

revealed significant resistance of C. vulgaris against phenanthrene as a PAH pollutant [45]. The 

capacity of tolerance was tested by Chlorella sorokiniana, Arthrospira platensis, Chlorella 

vulgaris, Arthrospira maxima (spirulina) and Tetradesmus obliquus to wastewater via increasing 

residue concentrations. The results observed that the decreasing iron and hydrocarbons 97.9% 

and75, respectively [48]. Stable cell growth requires gas velocity control to avoid shear stress, 

although C. vulgaris can tolerate unsteady conditions [73]. In the airlift photobioreactor, the 

photosynthesis reaction is carried out with the help of carbon dioxide, light, and inorganic 

nutrients. In this process, organic cell components such as proteins, lipids, nucleic acids and 

carbohydrates are produced. CO2 injection from a gas cylinder provides inorganic carbon and 

helps us to maintain the pH at its optimal value [71]. Removal efficiency is closely related to 

cell density. Higher initial cell density provides more surface area for better remediation, but as 

the cell density increases, the culture solution becomes too viscous and impairs aeration in the 

airlift photobioreactor. An important factor that is very important in the proliferation of algae is 

the pH level of the effluent. In high and low pH values, when the culture medium becomes 

extremely alkaline or acidic, the living conditions for algae become difficult and the possibility 

of their resilience is greatly reduced [74]. Many microalgae can grow in both acidic and alkaline 

environments. In the studies conducted, the suitable pH range for most microalgae is reported 



 

 

as 7-9 [75]. Previous studies have shown that high pH increases ammonia toxicity and gradually 

decreases cell population. Additionally, low pH and acidic conditions inhibit biomass 

production. At pH 5.0 and 9.0, the algal growth efficiency decreases dramatically [50, 51, 58]. 

Figure 5 shows that the performance of Chlorella vulgaris in the ammonia adsorption process 

was very similar in samples NO.3 and NO.4. The phase lag decreased, and the ammonia removal 

rate increased simultaneously with biomass production. Moreover, the maximum cell growth of 

microalgae and ammonia absorption occurred in 48-120 hours, and finally all hydrocarbons 

were removed. Differences in hydrocarbon composition may account for the tolerance in 

biomass production rate. It has also been observed that in contaminated wastewater that contains 

higher concentrations of hydrocarbons, the carbon required by microalgae is efficiently supplied 

afterward, more biomass is produced, and more ammonia is removed as the surface area 

increases. Our findings are consistent with the results obtained in previous research.  

Malfait et al. [76] showed the production of Monascus purpureus in the airlif reactor was more 

than stirred tank. Moreover, the opwer consuption airlift reactor was 50% mechanically srirrer 

reactors. Oxygen mass transfer to the aqueous phase was enhanced significantly in the airlift 

reactors.  

Smart and et al [77] proved the  possibility of continuous and extensive cultivation (within 14 

days) of plant cell suspensions related to Catharanthus roseus in the small airleaf reactor with 

an outer ring with a volume of 0.01 m3. Chisti et al [78] reported various types of airlift 

bioreactors are usful for aerobic fermentations. These reactors have very small volume 

compared to conventional activated sludge systems and high oxygen transfer. Mohanty et al. 

[79] applied multi-stage external loop airlift reactor for removal of phenol from wastewater by 

adsorption onto the activated carbon surface. Various parameters such as superficial gas 

velocity, liquid circulation velocity, contact time, pollutant concentration in wastewater, and the 

carbon were investigated. Using airleaf reactors to perform this separation eliminates 

operational complications and achieves a higher separation efficiency. Kim et al. [80] were 

cultivated Aspergillius niger in various reactors and found that the highest rate of growth algae 

was in the airlift reactor.  Sánchez Mirón et al [81] focuced on the culturing phototrophic 

organisms by airlift photobioreactors. They investigated mass-transfer and hydrodynamic 

parameters in three air-agitated reactors: split-cylinder airlift device, bubble column and 

concentric draft-tube sparged airlift vessel. The results indicated that despite the difference in 

fluid dynamics, the production rate of Phaeodactylum tricornutum algae was the same in all 

ailrlift reactors with different designs.  



 

 

S. capricornutum as a green microalgal species for degradation and removal of polycyclic 

aromatic hydrocarbons showed ~ 100% removal efficiency [33]. Another study showed 

capability of Chiarella vulgaristo to purify wastewater from different pollutant [35]. Salehi et 

al. [71] showed superior capacity of Chlorella vulgaris for hydrocarbon removal. 

Light is an effective factor in algae photosynthesis. In the high depth of water, due to the lack 

of light penetration, the density of algae decreases drastically, because the process of 

photosynthesis is disturbed, and in fact, the intensity and quality of light play an important role 

in the growth and metabolism of algae [55]. By increasing the light intensity to the optimal level, 

photosynthesis and biomass production increase, but if the light intensity increases too much, 

photosynthesis decreases and growth stops [82]. 

One of the physical factors effective in the proliferation of microalgae is temperature, which is 

directly effective in their growth [82]. The optimum temperature for the growth of different 

species of microalgae is different. The most suitable temperature for the proliferation of 

microalgae is in the range of 15-26 [83]. Algae metabolism rate increases at higher temperatures, 

and low temperature is not favorable for their growth. However, other parameters such as light 

intensity also affect the optimal temperature [82]. Table 3 shows the comparison of ammonia 

removal and and biodegradation of crude oil between this study and other published studies. 

According to Table 3 ammonia removal and and biodegradation of crude oil are comparable to 

other published studies. 

 

 

Figure. 4. The uptake rate of ammonia by Chlorella vulgaris with initial effluent containing 10 Mg/L ammonia 
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Figure 5. The uptake rate of ammonia by Chlorella vulgaris with initial effluent containing 10 Mg/L ammonia 

 

Table 3. The comparison of ammonia removal and biodegradation of crude oil between this study and others. 

microalgae 
Culture 

day 

Initial concentration  
Biodegradation 

rate  

Ammonia 

removal  
Ref. amminia(mg/

l) 
Hydrocarbon(mg/l) 

C.vulgaris 14 ….. 
crude oil  

10000,  20000  

94% light 

compounds  

 88% heavy 

compounds  

 

….. [24] 

C.vulgaris 7 10,  20   100 1 

C.vulgaris 7 … Naphthalene -5 90–92  %  ….. [24] 

C.vulgaris 7  Anthracene -5    90–94  %  [24] 

C.vulgaris 7 …. Pyrene -5   76  % …. [24] 

C.vulgaris 8 5.22–25.24  100 100 2 

C.vulgaris 9 10 

 

0.21 

0.45 

4.25 

5.16 

 

100 100 
This 

study 

       

 

 

4. Conclusions 
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In general, limited information is available on the toxicity of hydrocarbon and ammonia 

simultaneously on microalgae. The findings of this research confirmed the positive effect of 

hydrocarbons removal for all samples and significant ammonia removal for NO.3 and NO.4 

samples in low-level polluted wastewater. Based on the results obtained, the organic 

compounds as a carbon source not only did not inhibit ammonia removal but also had the 

benefits of increasing biomass production rate and ammonia uptake. The increase in cell 

density and the surface area causes more contaminants absorption, so with more biomass 

production, ammonia removal will be increased faster and in a shorter period. In addition, 

Chlorella vulgaris is recommended as a toxicity indicator in biological wastewater treatment 

systems. 
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