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Abstract- The purpose of this article is to inspect the impact of singular magnetic source on the thermal efficiency of a 

ferrofluid containing Fe304 nanoparticles flowing through an elbow pipe with a junction. The study utilizes comprehensive 

numerical simulations to analyze the flow stream and temperature distribution, with a particular focus on the role of the 

generated vortex in enhancing heat transfer along the elbow pipe. The simulations are conducted using computational fluid 

dynamics techniques to model the flow of the ferrofluid. The thermal analysis considers various magnetic intensities and 

velocities of the ferrofluid. The obtained data reveals that the vortex created via singular magnetic source contributes to a rise 

in the average heat transfer along the elbow pipe. Additionally, the study finds that the magnetic intensity plays a more 

significant role when the inlet velocity of the ferrofluid is lower. Specifically, a 300% increase in the magnetic field results in 

an approximately 17% improvement in the thermal performance. Overall, this research sheds light on the importance of a non-

uniform singular magnetic source in enhancing thermal efficiency in ferrofluids flowing through elbow pipes. The findings 

highlight the potential for optimizing heat transfer in such systems by controlling magnetic intensity and fluid velocity. 
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INTRODUCTION 

Ferrofluids are colloidal holdups consisting of magnetic nanoparticles suspended in a carrier liquid. These 

unique fluids exhibit fascinating properties when exposed to magnetic fields, making them a promising candidate 

for various applications. In the context of heat exchangers, different types of ferrofluids have been explored for 

their potential in enhancing heat transfer performance and improving thermal management systems [1-3]. 

Oil-based ferrofluids are the most commonly used type of ferrofluids in heat exchangers. They typically consist 

of magnetic nanoparticles, such as magnetite (Fe3O4) or maghemite (γ-Fe2O3), suspended in a carrier oil, such as 

kerosene or mineral oil [4-6]. Oil-based ferrofluids offer excellent stability, high thermal conductivity, and 

compatibility with conventional heat transfer fluids. When subjected to a magnetic field, these ferrofluids respond 

by forming chains or clusters of nanoparticles, thermal performance in heat exchangers is improved [7, 8]. 

Water-based ferrofluids, as the name suggests, utilize water as the carrier liquid instead of oil. They typically 

employ iron oxide nanoparticles coated with hydrophilic surfactants to provide stability and prevent 

agglomeration [9-11]. Water-based ferrofluids offer advantages such as low toxicity, environmental friendliness, 

and ease of handling. However, their relatively lower thermal conductivity compared to oil-based ferrofluids can 

limit their heat transfer enhancement capabilities. Nevertheless, ongoing research aims to optimize the properties 

of water-based ferrofluids for improved heat transfer performance in heat exchangers [12-14]. 

Hybrid ferrofluids combine the advantages of both oil-based and water-based ferrofluids [15]. These ferrofluids 

consist of a mixture of oil and water as the carrier liquid, along with magnetic nanoparticles [16]. Hybrid 

ferrofluids can offer improved thermal stability, enhanced thermal conductivity, and better control over the 

interfacial behavior between the nanoparticles and the carrier liquid [17, 18]. The unique properties of hybrid 

ferrofluids make them suitable for specific heat exchanger applications where a balance between thermal 

performance and other factors, such as stability or compatibility, is required [19-21]. 

Ionic ferrofluids are a relatively newer class of ferrofluids that exhibit both magnetic and ionic properties [22]. 

These ferrofluids consist of magnetic nanoparticles suspended in an ionic liquid, which is a salt that exists in a 

liquid state at or near room temperature. Ionic ferrofluids offer exceptional thermal stability, high electrical 

conductivity, and unique interfacial properties. The presence of ionic components in these fluids introduces 

additional mechanisms. As a result, ionic ferrofluids hold potential for advanced heat transfer applications, 

including heat exchangers [23, 24]. 

In conclusion, different types of ferrofluids, including oil-based, water-based, hybrid, and ionic ferrofluids, have 

been explored for their potential in enhancing heat transfer performance in heat exchangers [25, 26]. Each type of 

ferrofluid possesses unique properties and characteristics that can be tailored to specific heat exchanger 

requirements. Ongoing research and development efforts aim to optimize the properties and performance of these 

ferrofluids, opening up new avenues for more efficient and sustainable thermal management systems [27, 28]. 

The efficient exchange of thermal energy is of paramount importance in various industrial applications [29, 30]. 

The use of nanofluids has emerged as an intriguing approach to enhance heat transfer performance. Lately, 

researchers have explored the potential of nanofluids to further improve heat transfer characteristics, particularly 

in heat exchangers [31]. 



 

 

Magnetic fields have been recognized as a non-intrusive and versatile method for manipulating fluids due to 

their ability to induce convection and alter fluid flow patterns. When combined with nanofluids, the interaction 

between magnetic fields and suspended nanoparticles introduces additional mechanisms that can significantly 

enhance heat transfer efficiency [36]. 

In this context, it is important to differentiate between homogeny and non-uniform magnetic source. A 

homogeny magnetic field refers to a field with constant strength and direction throughout the heat exchanger 

system, whereas a non-homogen magnetic field exhibits spatial variations in strength or direction. Both types can 

influence the behavior of nanofluids and subsequently impact heat transfer performance [32, 33]. 

The nanoparticles distributed in the water respond to the magnetic field by reorienting themselves, which alters 

the thermal conductivity and convective heat transfer properties. This reorientation can lead to improved heat 

transfer rates, reduced thermal resistance, and enhanced overall performance of heat exchangers [34]. 

On the other hand, the interaction between nanofluids and non-uniform magnetic fields introduces additional 

complexities. Non-uniform magnetic fields induce spatial variations in the orientation and concentration of 

nanoparticles, resulting in non-uniform distribution of heat transfer. Understanding and optimizing the behavior 

of nanofluids under such conditions are crucial for maximizing the benefits of magnetic field-assisted heat transfer 

enhancement. 

Various experimental and numerical investigations are being conducted to comprehensively understand the 

underlying mechanisms, and explore potential applications in industries such as energy, electronics cooling, and 

thermal management. 

In this study, we aim to analyze thermal improvement using nanofluids within heat exchangers. By investigating 

the fundamental principles, exploring the behavior of nanofluids under different magnetic field conditions, and 

evaluating the performance of heat exchanger designs, we strive to contribute to the advancement of magnetic 

field-assisted heat transfer enhancement techniques. 

Overall, the combination of nanofluids and magnetic fields holds great potential for improving heat transfer 

efficiency and performance in heat exchangers.  

In this article, the hydrodynamics of the nanofluid flow is systematically investigated by CFD for the evaluation 

of the influences of the magnetic source on the existing ferro particles in the water base fluid. The shape of the 

investigated model is exhibited in Fig. 1a.  

2. Governing equations and applied numerical method 

 The modeling of the nanofluid flow is simulated by solving Navier-stokes equations since a based fluid (water) 

is laminar, incompressible and steady. Since the particles with diameter less than 2 nm has no magnetic 

characteristic. Since its size is too tiny and homogeneity inside the base fluid (water), base water and nanoparticles 

act like a single fluid and a single phase model is applied for the simulation of the proposed model. The key 

governing equations of the 2-D stream of nanofluid [5, 26] with declared assumptions are as follows:  
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 These source terms (Fk) are obtained via these formulas: 

(5) 
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In these equations, the FK (x) and FK (y) are related to the Kelvin force in x and y direction. By the presence 

of the magnetic field, these terms are calculated via via following equation: 
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In which, 𝛼𝑚, Hr and H are the thermal diffusion coefficient, the constant magnetic transmitter in a vacuum, 

and distance from the entrance of the pipe, respectively. Table 1 presents the thermo-characteristics of nanofluid 

flow with 4% volumetric nanoparticles. The nanoparticles in nanofluids are typically very small and have a high 

surface-to-volume ratio. Due to their small size, the interparticle interactions, such as particle-particle collisions 

and agglomeration, are assumed to be negligible in dilute suspensions. As a result, the nanoparticles are considered 

as individual entities that do not significantly affect the overall flow and heat transfer behavior of the nanofluid. 

Thus, single phase model is reasonable for the modeling of the nanofluid heat transfer. 

Table 1.  Thermal properties of nanoparticles and base fluid [20] 
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 The applied boundary condition and size of the proposed model is exposed in fig. 1. The location of the wire 

is in front of inlet 2. There are two inlets and one outlet as demonstrated in Fig. lb. The velocity of inlet nanofluid 

is presented via Reynolds number in the range of 40-120. The definition of angle variation in the archived results 

is also demonstrated in Fig. lb. 
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Fig. 1 model descriptions a) boundary condition b) geometry  



 

 

 

 

 

Fig. 2 Grids 

 Structured grid is generated for the suggested model in which grid resolution is higher near the wall as exhibited 

in Fig. 2. To attain grid size which is independent of results, non-dimensional temperature variations along the 

curve of four grids are examined and compared. As verified in Fig. 3, the grid with 26000 cells (100x260) is a 

reliable grid for our proposed model. 



 

 

 

Fig. 3 grid study 

 3. Results and discussion  

The numerical data of Aminfar et al. [35] is applied to validate the applied approach for investigation of the 

current model. Table 2 presents and compares the validations. The inlet Reynolds number of nanofluid flow for 

this comparison is 40. Evaluation of this hydrodynamic factor confirms that the chosen methodology is acceptable. 

In addition, Table 3 presents the validation of this work with experimental results [36]. Theoritical approaches are 

widely used in various engineering applications [37-41]: 

Table 2. Verification of normalized velocity 

2r/D Aminfar et al. [35] Present data 

0 1.43 1.41 

0.1 1.41 1.40 

0.2 1.40 1.40 

0.3 1.40 1.38 

0.4 1.39 1.35 

0.5 1.35 1.30 

0.6 1.25 1.20 

0.7 1.1 1.06 

0.8 1 0.96 

0.9 0.4 0.38 

1 0 0 

 



 

 

Table 3. Validation of achieved Nusselt with experimental  

z/D Khanafer and Vafai [36] Present data 

0 27.1 26.5 

25 14.2 13.9 

50 8.2 7.9 

100 7.1 6.8 

125 6.2 6.1 

175 5.8 5.7 

225 5.5 5.4 

275 5.3 5.1 

300 5.2 5.0 

 

Comparing velocity profiles between single-phase and two-phase flows can be acceptable and informative 

under certain circumstances. If the single-phase and two-phase flows are occurring under similar flow conditions, 

such as the same Reynolds number or similar geometries, fpresence of the second phase affects the flow patterns 

and velocity gradients. Comparing velocity profiles qualitatively can provide a visual understanding of the flow 

characteristics. By examining the shape, extent, and asymmetry of the velocity profiles, one can identify 

differences between single-phase and two-phase flows. This qualitative analysis can reveal the presence of 

recirculation zones, velocity gradients, and flow patterns associated with the interaction between the phases. 

Figure 4 illustrates the stream of nanofluid flow inside the model with/without magnetic source at inlet Reynolds 

number of 50. In the model without magnetic source, the flow stream is almost laminar without any circulations. 

As the wire is positioned near the bending curve of the elbow, the circulation is produced near the magnetic source. 

This is because of the kelvin force which is induced via magnetic field. This force pushes the stream like a block 

body and consequently, the vortex is produced in this section. Although injection flow pushes this vortex, the 

power of this vortex is high enough. The circulation region easily expands as the strength of the magnetic field is 

increased.  

 



 

 

 

 

a) b) 

  

c) d) 

Fig. 4 Streamline under impacts of a) Mn=0 b) Mn=564000 c) 1002000 d) Mn=1560000 

 

The change of heat transfers along the curved tube without a magnetic source is displayed in Figure 5. In fig. 

5a, the inlet Reynolds number is 50 and the change of Nusselt number shows that the injection in the curve results 

in a drop at alpha=45 although magnetic source is not applied. In fact, the intensity of this drop in Nusselt number 

is higher and it moves to a lower angle. After this drop, Nusselt number surges substantially due to vortex 

formation especially in the model with high magnetic intensity. After circulation, the Nusselt number decreases 

meaningfully. As the velocity of inlet ferrofluid is increased to Re=150, the impression of the magnetic source on 

the heat transfer value is not substantial in comparison to the model without magnetic source. In Fig. 6, the 

impression of the inlet velocity on the thermal characteristic of the curved elbow without magnetic source is 

displayed. As mentioned before, the drop and rise of the Nusselt number at an angle of 40 degree is associated 

with the injection of ferrofield from the junction. Comparison of Nusselt numbers for these Reynolds numbers 



 

 

indicates that increasing the inlet velocity has meaningful impacts on the thermal characteristics along the curved 

elbow pipe with junction.  

  

a) b) 

Fig. 5 Heat transfer for different magnetic intensities 

 

 

Fig. 6. Nusselt number along the angles 



 

 

Figure 7 exhibits the temperature contour inside the elbow pipe with junction when different powers of magnetic source are 

applied near the elbow pipe with junction. In models without a magnetic source, the injection of ferrofluid declines temperature 

and consequently, the heat rate cuts locally near injection. The role of magnetic source on the temperature contour clearly 

confirms the penetration of the thermal layer into the mainstream via production of the vortex. As the intensity of the magnetic 

source is amplified, the expansion of the thermal layer improves. 

 
 

a) b) 

 

 

c) d) 

Fig. 7    Temperature contour with intensity of a) Mn=0 b) Mn=564000 c) 1002000 d) Mn=1560000 

 

 The total heat transfer along the junction is crucial for the thermal evaluation. In this section, heat transfer improvement of 

the elbow pipe with secondary inlet is investigated in different magnetic intensities. Hence, the impacts of three magnetic 

intensities (Mn=564000, Mn=1002000 and Mn=1560000) on thermal efficiency of proposed configuration are 

compared. Figure 8 plots the change of average Nusselt number along the curved pipe for four diverse strengths of magnetic 

source intensity. It was expected to attain a higher average Nusselt number when the magnetic source is increased. A 300% 



 

 

increase in the magnetic field increases the average heat transfer along the pipe by about 17 %. In fact, this low enhancement 

of the heat transfer may have related to the junction ferro flow mentioned in the previous paragraph.  

 

Fig. 8 variation of the Nusselt number 

 

4. Conclusion 

 The chief concentration of this article is the analysis of the flow stream of a ferrofluid inside the elbow pipe under various 

magnetic intensities. The objective is to understand the system of heat transfer along the pipe by examining temperature 

contours and the vortex generated by the non-homogen magnetic field. 

 

The results of this study reveal that the presence of a vortex initially decreases heat transfer, but as the thermal layer expands, 

heat transfer is subsequently enhanced. This phenomenon is observed by analyzing the change in heat transfer on the pipe wall 

at different angles. 

Furthermore, the study demonstrates that the average heat transfer of the elbow pipe can be improved by approximately 

17% as the magnetic source intensity is amplified from Mn = 0.564 x 106 to Mn = 1.566 x 106. This highlights the significant 

impression of magnetic intensity on thermal enhancement in the system. 

Overall, these achievements pay a regular contribution to a better appreciative of the thermal behavior of ferrofluids flowing 

through curved elbow pipes with non-uniform magnetic fields. The results emphasize the potential for heightening heat transfer 

in such systems by controlling the magnetic intensity. Further research in this area can focus on exploring additional parameters 

and optimizing the design of magnetic sources to maximize heat transfer efficiency.  
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Nomenclature 

Latin symbols 

E Energy  

F force vector   

g standard gravity  

h Enthalpy, heat transfer coefficient  

H distance  

Hr constant magnetic transmitter in a vacuum  

k conductive coefficient  

P pressure  

Q Heat transfer  

S mass source term  

T temperature  

t time  

v velocity  

V volume  

x,y,z Cartesian coordinates  

 

Greek symbols 

𝛼𝑚 
thermal diffusion coefficient 



 

 

𝜉 
zeta potential  

𝜇 
effective viscosity  

𝜌 
mass density  

𝜒 
electric susceptibility of medium 
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