Heat Transfer of Liquid/ Solid Fluidized Beds for Newtonian and Non-Newtonian Fluids

Document Type : Research Article

Authors

1 Faculty of Petroleum Engineering, Petroleum University of Technology, Ahwaz, I.R. IRAN

2 Institute for Thermodynamics & Thermal Engineering, University of Stuttgart, GERMANY

Abstract

The excellent performance of fluidized bed heat exchangers is due to the interaction between particles and heat transfer surface and to the mixing effects in the viscous sublayer. In this paper, the results of experimental investigations on heat transfer for a wide range of Newtonian and non-Newtonian (shear-thinning power law) fluids are presented. New design equations have been developed for the prediction of heat transfer coefficient.  The predictions of these correlations and of numerous correlations recommended by other authors are compared with a large database compiled from the literature.

Keywords


[1] Jamialahmadi,  M.  and Müller-Steinhagen,  H., Hydrodynamics and Heat Transfer of Liquid Fluidized Bed Systems, Chem. Eng. Comm., 179, pp.35-79, (2000).
[2] Jamialahmadi, M. and Müller-Steinhagen, H., Bed Voidage in Annular Solid-Liquid Fluidized Beds, Chemical Engineering and Processing, 31, pp. 221-227, (1992).
[3] Aghajani, M., Studies of Bed Voidage and Heat Transfer in Solid-Liquid Fluidized Bed Heat Exchangers, PhD thesis, University of Surrey, UK, (2001).
[4] Yagi,  S.  and Wakao, N.,  Heat and  Mass  Transfer from Wall to Fluid in Packed Beds, AICHE J., 5, pp. 79-85, (1959).
[5] Midoux, N., Wild, J., Purwasamita, M., Chapentier, J. C. and Martin, H., Zum Flüssigkeitsinhalt und zum Wärmeübergang in Rieselbettreaktoren bei boher Wechselwirkung des Gases und der Flüssigkeit, Chem. Eng. Tech., 58, pp. 142-143, MS1445/86, (1986).
[6] Murayama, K., Fuluma, M. and Yasunishi, A., Wall-to-Bed Heat Transfer in Liquid-Solid and Gas- Liquid-Solid Fluidized Beds, Can. J. Chem. Eng., 64, pp. 399-408, (1986).
[7] Schütt,  U.,  Wärmeübertragung  in  der Flüssigkeitswirbelschicht mit senkrechten Rohren, Wiss Zeitung der Techn. Hochschule Magdeburg, 26, pp. 71-74, (1982).
[8] Kang, Y., Fan, L.T.  and  Kim, S. D.,  Immersed Heater-Type Bed Heat Transfer in Liquid-Solid Fluidized Beds, AIChE J., 37, pp. 1101-1106, (1991).
[9] Kollbach, J., Ph. D. Thesis, Universität Achen, Achen, (1987).
[10] Kim, S. D., Kang, Y. and Kwon, H. K., Heat Transfer Characteristics in Two and Three Phase Slurry Fluidized Beds, AIChE J., 32, pp. 1397-1400, (1986).
[11] Juma, A. K. A. and Richardson, J.F., Heat Transfer to Cylinders from Segregating Liquid-Solid Fluidized Beds, Chemical Engineering Science, 40, pp. 687-694, (1985).
[12] Macias-Machin, A., Oufer, L. and Wannenmacher, N., Heat Transfer between an Immersed Wire and a Liquid Fluidized Bed, Powder Technology, 66, pp. 281-284, (1991).
[13] Jamialahmadi, M., Malayeri, M. R., and Mülller-Steinhagen, H., A Unified Correlation for the Prediction of Heat Transfer Coefficients in Liquid-Solid Fluidized Bed Systems, Journal of Heat Transfer, 118, pp. 952-959, (1996).
[14] Chiu, T. M. and Ziegler, E. N., Liquid Hold-up and Heat transfer Coefficient in Liquid-Solid and Three-Phase Fluidized Bed, AIChE J., 31, pp.1504-1509,(1985).
[15] Jamialahmadi,  M.  and Müller-Steinhagen,  H., “Forced Convective and Subcooled Flow Boiling Heat Transfer to Spent Bayer liquor”, Light Metals, pp. 141-150, (1992).
[16] Schütt, U., Wärmeübertragung in der Flüssigkeitswirbelschicht mit senkrechten Rohren, Ph. D. Thesis, Universität Magdeburg, (1983).
[17] Haid, M., Martin, H. and Müller-Steinhagen, H., Heat Transfer to Liquid-Solid Fluidized Beds, Chem. Eng. and Processing,33, pp. 211-225, (1994).
[18] Murayama, K., Fuluma, M. and Yasunishi, A., Wall-to-Bed  Heat Transfer in Gas- Liquid-Solid Fluidized Beds, Can. J. Chem. Eng., 62, pp. 199-208, (1984).
[19] Han, C. Y., and Griffith, P., The Mechanism of Heat Transfer in Nucleate Pool Boiling, Part I and II, int. J. Heat and Mass Transfer, 8, pp. 887-917, (1965).
[20] Gnielinski, V., “Wärmeübergang in Rohren”, VDI-Wärmeatlas, 5th ed., VDI-Verlag, Düsseldorf, (1986).
[21] Filonenko, G. K., Hydraulic Resistance in Pipes, Teploenergetika, 1, pp. 40-44, (1954).
[22] Mickic, B. B., and Rohsenoe, W. M., A New Correlation of Pool Boiling Data Including the Effect of Heat Surface Characteristics, J. Heat Transfer, 5, pp.245-250 , (1969).
[23] Martin, H., Fluid Bed Heat Exchangers- A New Model for Particle Convection Energy Transfer, Chem. Eng. Commun., 13, pp. 1-16, (1981).
[24] Martin,  H.,  “ Fluidized Beds”, Heat Exchanger Design Handbook, Hemisphere Publishing Corporation, Washington DC, pp. 2.8.4.1-2.8.4.14, (1990).
[25] Latif, B. A. J. and  Richardson, J. F., Circulation Patterns and Velocity Distributions for Particles in a Liquid Fluidized Bed, Chem. Eng. Sci., 72, pp. 1933-1949, (1972).
[26] Richardson, J. F. and Smith, J. W., Heat Transfer to Liquid-Fluidized Systems and to Suspensions of Coarse Particles in Vertical Transport, Trans. Inst. Chem. Eng., 40, pp.13-22, (1962).
[27] Grewal, N. S. and Zimmerman, A. T., Heat Transfer from Tube Immersed in a Liquid-Solid Fluidized Bed, Powder Technology, 54, pp. 137-145, (1988).