
Appendix: A (Mathematical Model of Quadruple Tank 

Process) 

Let F1, F2 be the flow rates of pump 1 and pump 2 

respectively. 

Let Fij be the fraction of water flowing from Pump i to 

tank j. 

Let F0j   be the outlet flowrate of tank j. 

11 1 1  F F=                                                                            (1) 
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Assume a square root relationship between the outlet 

flowrate and level of each tank. Let j represent the outlet  
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Mass balance on Tank 1: 
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Mass balance on Tank 2: 
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Mass balance on Tank 3: 
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Mass balance on Tank 4: 

4 44 1 1
4

4 4

hdh (1 )F
f

dt A A

− 
= = −                                        (6) 

Steady state solution: 
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Appendix: B (Transfer function matrix of Quadruple 

Tank Process) 

Defining the State Space Model of the process as: 

X = Ax + Bu  

y = Cx  

Where, 
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Elements of A and B Matrices are obtained by 

linearization: 
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Elements of C Matrix: 

Since only h1 and h2 act as the two measured variables: 
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Final form of the state space model: 
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Transfer function matrix of the process is determined 

as: 
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Zeros of the system:  

The zeros of transfer function matrix are found out by 

equating the determinant of the matrix to 0. 
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For the case when,𝛾1 + 𝛾2 = 1 one zero is at origin and 

other is in the left half-plane. 

Determination of Transmission Zeros of the process: 
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The value of C can be either negative or positive or 

zero, depending on the value of . 

Case A:  If C=0  

D=B 
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On solving 1 2 1 2(1 )(1 )−  −  =    
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Case B: when C<0 
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For the system to be in non-minimum phase:0 < 𝛾1 +

𝛾2 < 1 

Case C: when 0C   
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Maximum value of 1 2 2 +  =  and min value is zero. 

For both the zeros in left half-plane (one at -1/T3 and 

other at -1/T4) i.e. system in minimum phase: 

1 < 𝛾1 + 𝛾2 <2. 

 


