Appendix: A (Mathematical Model of Quadruple Tank
Process)

Let F1, F» be the flow rates of pump 1 and pump 2
respectively.

Let Fjj be the fraction of water flowing from Pump i to
tank j.

Let Fo; be the outlet flowrate of tank j.
Fi=mh (1)
Fu=0-1)R Foo =725 Fis =(1-72)F,

Assume a square root relationship between the outlet
flowrate and level of each tank. Let f; represent the outlet

For = Bl\E Foo = BZ\E (2)
Fos = B3\/E Foa = B4\/E

Mass balance on Tank 1:
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Mass balance on Tank 2:
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Mass balance on Tank 3:
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Mass balance on Tank 4:
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Steady state solution:
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Appendix: B (Transfer function matrix of Quadruple
Tank Process)
Defining the State Space Model of the process as:

X = Ax+Bu
y =Cx
Where
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dt hy —hy
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Elements of A and B Matrices are obtained by
linearization:
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Elements of C Matrix:
Since only h1 and h2 act as the two measured variables:
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Final form of the state space model:
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Transfer function matrix of the process is determined

as:
CY(S) i At
G(s)= Us) =C(sl-A) B
[ Y1Cy (1-v,)c,
6 (s) - 1+sT, (14T, )(1+5Ty)
(1-vn)c, Y2C>
_(1+sT2)(l+sT4) 1+sT,
[ I(ll k12 ]
6(s) - (1+sT)) (1+5Ty)(1+5Ty)
k21 k22
| (1+5T,)(1+5T,) (1+sT,)

Where,

T
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Zeros of the system:
The zeros of transfer function matrix are found out by
equating the determinant of the matrix to 0.

detG(s) =
C[11C271Y2 (1+ST3)(1+ST4)— (1—Y1)(1—'Y2)
11 _@+sT;) Y1Y2
(1+sT3)(1+sT4)—w=O
Y1iV2
Let, n = (1-v)(1-72)

Y1Y2
(1+5T;)(1+sT,)-n=0
For the case when,y, + y, = 1 one zero is at origin and

other is in the left half-plane.
Determination of Transmission Zeros of the process:

(1+5T;)(1+sT,)-n=0

ToT,s? + (T, +T,)s+(1-1) =0

. —(T3+T,) i\/(Ts +T,)* —4T,T,(L-7)
2T,T,

Let, A=T,T,
B=T,+T,
C=1-n

As’ +Bs+C=0

_B++B2—4AC

Let the roots be z,, = oA

Determinant D = B2 — 4AC

-B+D
z, =
2A
-B-D
z,=
2A

The value of C can be either negative or positive or
zero, depending on the value of n.

Case A: If C=0
D=B



-B
A
C=1-n=0
Onsolving (L-v,)(L-7,) =717,
Y+, =1
Case B: when C<0
—4AC >0
B2 —4AC > B?
D>B
Zl =+Vve

Z, =

z, =-ve
So, 1-1<0
Y1 +7, <1
For the system to be in non-minimum phase:0 < y; +
Y, <1
Case C: when C >0
Z, =-Ve,z, =-Ve
Yi+7v2,>1
Maximum value of y, +vy, =2 and min value is zero.

For both the zeros in left half-plane (one at -1/T5 and
other at -1/T4) i.e. system in minimum phase:



