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ABSTRACT: Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation 

(NDDR) method. One of its main advantages is its suitability for on-line applications. This paper 

presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature 

measurements of a distillation column and concentration measurements of a CSTR. In each 

time step, random numbers with zero mean and specified variance were added to simulated results 

by a random number generator. The generated data are transferred on-line to a developed data 

reconciliation software. The software performs NDDR on received data using EKF method. 

Comparison of data reconciliation results with simulated measurements and true values 

demonstrates a high reduction in measurement errors, while benefits high speed data reconciliation 

process. 

KEY WORDS: Data reconciliation, Nonlinear dynamic Data reconciliation, Extended kalman 
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INTRODUCTION 

Process plant measurements inherently contain 

random and gross errors due to various sources such as 

environmental, instrumental and human factors. These 

data can affect performance of controlling systems and 

decrease performance of  controlled  processing  systems. 

Thus these errors must be removed or alternatively their 

effect on the performance of systems must be reduced. 

Data Reconciliation (DR) is an optimization method 

for elimination of random errors from measured data of 

processing systems. It uses process models as constraint,  
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and statistical properties of measurements. DR can be 

performed in both steady-state and dynamic conditions. 

Many researches have been done within the framework of 

Linear and Nonlinear Steady-State Data Reconciliation 

(LSSDR and NSSDR). But enhancing the performance of 

Linear and Nonlinear Dynamic DR (LDDR and NDDR) 

in the contexts are still open and some methods have been 

proposed for NDDR ([1-9]). Extended Kalman Filtering 

is a most widely used method for nonlinear dynamic 

processing systems such as control, diagnosis and data 

reconciliation. It has a high performance and can be 

applied on-line to different types of process measurements. 

This method is not extensively used for NDDR and its 

different aspects are not addressed. Only few papers are 

devoted to EKF. Almasy [1] presented a method, namely 

Dynamic Balancing, for dynamic reconciliation of state 

measurements using linear models and accordingly linear 

Kalman Filtering.  

Some of the papers only compared EKF method with 

other methods, [2 , 3]. Karajala et al. [9] used a recurrent 

neural network for system identification and applied EKF 

for data rectification via the trained network. Only two 

conference papers are devoted to direct application of 

Kalman Filtering in data reconciliation, [10,11] 

This paper initially explains on-line NDDR using 

EKF. Then application of on-line data reconciliation of 

measurements using EKF on a distillation column and a 

CSTR as two case studies is presented in order to show 

its benefits. It is assumed that errors in measurements are 

only random errors with zero mean and normal 

distribution, N (0,σ). 

THEORY 

EKF is an important method for NDDR applications. 

One of the forms of a process plant model that this 

method can be applied on, is in the following form, 

assuming no disturbances:

( ) wu,xf
dt

dx
+=                                                              (1) 

( ) ε+= u,xhy                                                                   (2) 

where x, y and u are vectors of state variables, 

measurements and input variables, respectively. Clearly,  

f and h are non-linear functions of x and u. In physico-

chemical processes these equations are obtained by 

conservation law of mass and energy.  

The vector of modeling errors and disturbances is 

shown by w and that of random errors in measurements is 

shown by ε. To application of EKF, the above model 

must be successively linearized around a known 

neighborhood of a state vector at time t1, x(t1), namely x1: 

( ) ( ) ( ) wu,xfuuJxxJ
dt

dx
111f1f

1u1x
++−+−≅                   (3) 

( ) ( ) ( ) ε++−+−≅ 111h1h u,xhuuJxxJy
1u1x

   ( ) ( ) ε++−+−= 11h1h ŷuuJxxJ
1u1x

where 
1xfJ , 

1ufJ , 
1xhJ  and 

1uhJ  are Jacobian matrices 

of f and h with respect to x and u at x1 and u1

respectively: 
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1ŷ  is the vector of estimated values of measurements 

at t=t1. In many cases u does not explicitly exist in 

measurement equation (Eq. (2)). Thus h is usually an 

function of x only, so Jh will be used in place of 
1xhJ  and 

also 
1f

J  and 
2fJ  in place of 

1xfJ  and 
1ufJ , respectively. 

Because EKF can be applied on discrete state-space 

models, Eq. (3) must be discretized. Assuming that 
1f

J , 

x1, 2fJ , u and f(x1,u1) are constant within the time 

domain of (k-1)T to kT, the final result is in the following 

form: 

[ ] [ ] [ ] wM1kBu1kAxkx ++−+−=                                   (5) 

[ ] [ ] ε+= kxJkz h

( )
21

1f

f
1

f
TJ

JJIAB,eA −−==

( ) ( )[ ] 111
1

f1 Buu,xfJxAIM
1

−−−= −

where k is the time step for data acquisition and T is 

the sampling time. The details of derivation are presented 

in Appendix A. 

Now, Eq. (5) can be used for EKF. Matrixes of 
1f

J , 

2fJ  and Jh can be calculated in each time step or in  

some specified time steps, depending on the required 

accuracy  and  nonlinearity  level  of the model equations.  
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Fig. 1: Implemented distillation column. 

For [ ]1kxx1 −=  and [ ]1kuu1 −= , the above equation 

can be simplified: 

[ ] [ ] ( ) [ ] [ ]( )1ku,1kxfJIA1kxkx
1

f1
−−−+−= −

EKF steps are just like traditional KF except that in 

each step a linearization on the model equations must be 

done in order to get a linear set of state-space equations 

for use in KF. The details of applying KF are not 

presented here and can be found in the literature [12]. 

Now for on-line NDDR the following steps are necessary:

a) acquisition of  new measurements from the plant,

b) calculation of Jacobian matrices of state and 

measurements equations using estimated values in 

previous step, 

c) application of KF on refreshed linear system, and 

calculation of estimates for states and measurements, the 

reconciled measurements. 

CASE  STUDIES 

The following two examples illustrate the performance 

of EKF on NDDR of distillation column and a CSTR.  

In both cases Kalman gain is dynamic and reaches a 

steady state value within a certain time domain.

Case 1: NDDR by EKF applied to a methanol-water 

distillation column 

In order to illustrate the application of described 

method, a distillation column is simulated.  

Fig. 2: Schematic of inputs/outputs for stage n of the 

distillation system.

The objective is to reconcile temperature measurements 

of the process. The distillation column under study has 6 

trays with a reboiler and a partial condenser (8 stages in 

total) as shown in Fig. 1. Feed at temperature of 78 °C 

and flow rate of 15 kg mol/min enters to the 4th stage 

from the bottom of the column. It contains 70 mol % 

water and 30 mol % methanol. 

The column stages are numbered sequentially from 

the bottom of the column (Fig. 2). All symbols used in 

the following equations are defined in the appendix B. 

Total mass balance equation for stage n shown in Fig. 2, 

can be written as:

( ) ( )=ρ+ρ VnVnLnLn
dt

d
H

dt

d
H                                        (6) 

nn1nnn1n FVVDLL +−+−+ −+

Volumetric liquid and vapor hold-ups are assumed to be

constant. Outputs from stages (Dn) can be represented as:

�	

�


�

+≠

+=
=

2Nn0

2Nn
R

L

D

n

n                                               (7) 

where R is reflux ratio. 

The vapor hold-up of a stage, νVn, can be ignored in 

comparison with the liquid hold-up, νLn. Thus the above 

equation can be written as: 

( ) nn1nnn1nLnLn FVVDLL
dt

d
+−+−−=ρν −+                (8) 
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Mass balance equation for component i can also be 

written in the following form, neglecting the vapor hold-

up: 

( )Ln Ln i,n n 1 i,n 1 n i,n

d
x L x L x

dt
+ +ν ρ = − −                        (9) 

n,fnn,in1n,i1nn,in xFyVyVxD +−+ −−

Assuming that vapor phase is ideal and variation of 

liquid volume with pressure is negligible, the equilibrium 

relation for the i-th component can be represented by: 

*
iiii PxPy γ=                                                                  (10) 

or 

iii xKy =                                                                       (11) 

where 

P

P
K

*
ii

i

γ
=                                                                     (12) 

In practice, liquid and vapor phases on a given stage 

are not in equilibrium. In order to determine the actual 

rate of mass transfer, plate efficiency is implemented: 

n,i1n,i

n,i1n,i
n

x)e(x

xx
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−
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+

+
                                                    (13) 

where the parameter xi,n+1(e) is the composition of the 

component i in liquid phase at equilibrium with vapor 

leaving stage n. Its value can be replaced by Eq. (11). 
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Multiplying Eq. (9) by En and using Eqs. (11) and 

(14), finally the following result is obtained: 
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The last term in Eq. (17) can also be replaced by the 

result of Eq. (8). 

Heat balance equation is used to calculate vapor flow 

rates: 
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For the computation of temperature variations in each 

column stage within a time domain, the column model 

can be completed by the implementation of equilibrium 

equations. Summing of Eq. (10) over the number of 

components results: 

�
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Differentiating the above equation with respect to 

time gives: 
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The vapor pressure, 
*
iP , is only a function of 

temperature, while activity coefficient, γi, is a function  

of temperature and components concentrations. By 

differentiating from 
*
iP  with respect to T, substituting the 

result into Eq. (22), assuming isobaric conditions, 

rewriting it with respect to T, and noting the two 

component system of water-methanol in this process, the 

following equation concluded: 
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Table 1: Interaction parameters used in Wilson equation. 

Gi,j Water Methanol 

Water 1 0.9695 

Methanol 0.4538 1 

In this research, liquid activity coefficient, γi, is 

calculated by Wilson equation as follows: 
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Values of the parameter Gi,j for the system of water 

and methanol are given in table 1 [14]. 

Vapor pressures of pure components are calculated 

using the Antoine equation. 

TC

B
APlog

i

i
i

*
i

+
−=                                                    (25) 

where T is in K and 
*
iP  is in Pa. Values of constant 

parameters of Antoine equation for the systemof methanol/ 

water are given in table 2 [14]. 

Differentiating Wilson equation with respect to T and 

composition, also vapor pressure with respect to T, and 

replacing the results in the Eq. (23), the equation for 

temperature variations in each stage can be obtained. The 

details are not presented here. After developing the model 

of processing system, the system is simulated. 

SIMULATION  RESULTS

According to the above equations, a program was 

designed and developed to simulate the plant. For the 

reflux ratio of 3, the process will reach to steady-state 

condition in less than 120 minutes. After 180 minutes, 

reflux ratio was subjected to a step change from 3 to 2.  

In this case, a new steady-state condition was established 

within less than 60 minutes. Fig. 3 shows temperature 

profiles off all stages.

It is evident that measurement of temperatures in 

distillation column is easier, faster and more economic 

than the measurement of liquid and gas compositions. 

Liquid and gas compositions can be calculated based  

on   temperature   measurements,   known    pressure   and  

Table 2: Values of coefficients used in vapor pressure equation. 

Component Ai Bi Ci

Water 7.9668 1668.71 228.00 

Methanol 7.8786 1473.11 230.00 

equilibrium relations. Thus as total pressure in distillation 

column is assumed to be constant, only temperature 

measurements are needed to be reconciled. According to 

Eq. (20), for 8 stages, there are 8 state variables and 8 

measurements.

[ ]T
2N1 T...Txz +==                                                       (26) 

By comparing the above vector with Eq. (5), it can be 

seen that matrix Jh is an identity matrix. According to Eq. 

(23), the state equation is nonlinear function of state 

variables: 

)u,x(fx =�                                                                     (27)

By noting Eq. (7), it can be concluded that R is the 

input variable for open-loop system of distillation column. 

In this research, an object-oriented NDDR software 

is designed and developed. It communicates data by 

other programs, such as the one written for the simulation 

of distillation column, via Dynamic Data Exchange 

(DDE) service. Other types of data communication  

such as communication by Component Object Model 

(COM), and via serial and parallel ports for connecting  

to real plants are also considered in this software (Fig. 4). 

For communication of data between two programs,  

only noisy measurements are sent from simulation 

program to NDDR software. During simulation, when 

measurements are requested by NDDR software, white 

noises are added to the measurements and sent to it. Then 

the software reconciles measurements using EKF. In the 

following tests, it is assumed that measurements contain 

no gross error. 

Test 1 

The results of data reconciliation using EKF for the 

startup of distillation column on top tray are shown in 

Fig. 5. In this test, the standard deviation of measurement 

errors is set to 1 °C. 

As can be seen, the reconciled values follow closely 

true values. 
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Fig. 3: Temperature profiles with respect to time of all stages 

for reflux ratios of 3 and 2.

Fig. 4: Communication of data between NDDR software and 

simulation program or real plant.

Fig. 5: Comparison of reconciled values based on NDDR 

using EKF for top tray temperature with true and noisy ones. 

Test 2 

The next test in open-loop mode was set for changing 

reflux ratio at steady-state condition from 3 to 5. In this 

test the standard deviation of measurement errors was 

also set equal to 1 °C. Fig. 6 shows the results of DR 

using EKF applied to all stages of the column. As it is 

evident, the reconciled values are very close to true ones 

and the largest standard deviation of measurement errors

was about 0.2 °C which is small compared to that of 

noisy values. 

Test 3 

The above results were performed for open-loop 

system. To show the performance of the system  

in closed-loop case, a combined control and data 

reconciliation scheme is defined (Fig. 7). A switching 

element is used between true and reconciled values in 

order investigate their effect on controller performance. 

Temperature of distillate stream is selected as 

controlled variable, and reflux ratio as manipulating one. 

The response of the system to a step change of +2 °C in 

the set-point of controlled variable using a PI controller is 

obtained. The controller parameters are adjusted based on 

classic Ziegler-Nichols method. The results of reconciled, 

true and noisy values are depicted in Fig. 8. The standard 

deviation of added white noises to true temperature 

values in this case is set to 1 °C. As can be seen, however 

the reconciled values show a fair set-point tracking, and

have standard deviation of 0.25.

Test 4 

In the above test, controller input was the true values 

generated by the simulation. In real plants true data are 

not available and only noisy measurements are used for 

control. But the use of these noisy data has a bad 

influence on the performance of the controlling system. 

To investigate the impact of using noisy or reconciled 

values on controller performance, firstly noisy data and 

then reconciled values are used for the control of 

distillation column.  

As it can be seen from Figs. 9 and 10, using noisy 

values causes the divergence of reconciliation process 

and the temperature of distillate stream oscillates 

continuously while using reconciled values avoids 

oscillation, causes the distillate temperature to reach to  

its  set-point  value  after  a  relatively   long   time   while  

NDDR 
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Fig. 6: Comparison of reconciled values based on NDDR using 

EKF for temperature of stages 5 to 8 with true and noisy ones.

Fig. 7: Combined control and data reconciliation scheme of 

distillation system.

Fig. 8: Comparison of reconciled values based on NDDR using 

EKF with true and noisy ones for the response of PI control of 

temperature of distillate stream to a step change in its value. 

reconciled data converge to the set-point in a very  

short time. In this test, the standard deviation of 

temperature measurements was 0.25 which is common 

for temperature measuring element [3]. Sampling time 

was 0.1 minutes. By decreasing the sampling time the 

controlling system can perform better. In real plants 

temperature transducers can measure temperature in less 

than 1 s. 

Test 5 

To explore the performance of the algorithm for 

manipulation of disturbances, feed flow rate is increased 

3 times of its steady-state value. True, noisy and 

reconciled values are shown in Fig. 11. In this case 

temperature of distillate stream is also the controlled 

variable and standard deviation of temperature measu-

rements is 1 °C. As can be seen, there is a large decrease 

in measurement error and the standard deviation of 

reconciled values is less than 0.08 °C. 

In all tests it took only about 0.25 seconds for  

each data reconciliation step including sending noisy 

measurements to NDDR software, data reconciliation and 

storing results. As sampling time for getting measurements 

from the plant is usually very large compared to this time, 

the presented method is very suitable for on-line NDDR, 

while other methods such as nonlinear programming are 

not well suited for on-line applications and are commonly 

slower in comparison with EKF. 

Case 2: Application of EKF for NDDR a CSTR 

processing system 

The next simulation example, is on-line NDDR of 

concentration measurements for a simulated CSTR 

performing a first order exothermic reaction [2] (Fig. 12). 

Component A with volumetric flow rate of q is fed 

continuously into the reactor and an exothermic first 

order reaction takes place within the reactor. The reactor 

is cooled with cooling water flowing through its jacket. 

Assuming constant density, the governing model 

equations are: 
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Fig. 9: Comparison of reconciled values based on NDDR 

using EKF with true and noisy ones for the response of PI 

control of temperature of distillate stream to a step change in 

its value using noisy data as the input to the controller.

Fig. 11: Comparison of reconciled values based on NDDR 

using EKF with true and noisy ones for the response of PI 

control of distillate stream to 300 % increase in feed flow rate. 

( )TEexpkk A0 −=                                                      (29) 

The physical constants of the model are shown in 

table 3. All symbols are introduced in Appendix B. 

The model can be transformed into dimensionless 

form by normalizing all concentrations and temperatures 

with respect to some nominal reference conditions [16]. 

The result of normalization is:
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Fig. 10: Comparison of reconciled values based on NDDR 

using EKF with true and noisy ones for the response of PI 

control of temperature of distillate stream to a step change in 

its value using reconciled data as the input to the controller. 

Fig. 12 : Process flow diagram of CSTR reactor. 

Variables with bar notation are normalized ones.  

For simplicity the bars will be dropped in the rest of the 

paper. For the examples presented, 6
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3
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The simulation initialized at a steady-state condition 

of 5.6C
0A = , 5.3T0 = , 1531.0CA =  and T=4.6091. A 

step change of 6.5 to 7.5 in feed concentration was 

performed at t = 30 s. The method of EKF was applied on 

noisy measurements. The reconciled, true and noisy 

measurements  with  respect  totime are shown in Fig. 13. 

The estimated values contain a lower level noise in 

comparison with the simulated measurements. As shown, 

the reconciled data follow the true values very closely. 

The standard deviation of errors in reconciled values is 

0.0013 which is 38 times smaller than standard deviation 

of errors in measurements (0.05). 

In reality, steady-state values of CA and T, i.e. initial 

conditions for Eq. (30), are also measured and may 

contain some errors. In order to see the effect of 

uncertainty in steady state measurements, random noises 

with the same standard deviation have been added into 

the simulated steady-state and dynamic results and the 

performance of EKF method is checked. 

As shown in Fig. 14, the fitness of reconciled values 

with true ones is very good. They have a standard 

deviation of 0.0052 which is much lower than 0.05 for 

noisy measurements. 

Test 2 

To show the benefits of EKF in highly transient 

behavior of the system a more challenging test was 

performed by beginning the simulation in a transient state. 

The feed temperature T0 was held constant at 4.6091 and 

the feed concentration was sequentially stepped from 7.5 

to 8.5 at time 40s and to 5.5 at time 60s. The reconciled 

values of CSTR measurements were significantly 

smoother than the simulated measurements (Fig. 15).

( ) AdAA
A

CkCC
V

q

dt

Cd
0

α−−=                                    (30) 

( ) ( )c
p

R
A

rp

Ar
d0 TT

Vc

UA
Ck

Tc

CH
TT

V

q

dt

Td
r −

ρ
−

ρ

Δ
α−−=

�
�

�
�
�

� −
=

r

A
0

TT

E
expkk  

where 

The standard deviation of the results is 0.0034. By 

introducing noises to initial conditions, the standard 

deviation of the results becomes 0.0076 (Fig. 16). 

Test 3 

To evaluate the ability of the algorithm to deal with 

biases, a test was performed. The bias is defined as the 

mean value of the measurements. A constant bias of 0.2 

was added to all concentration measurements. A step 

change from 6.5 to 6.0 was performed on feed 

concentration at t = 25 s. Fig. 17 shows the results which 

completely fit true values. But by introducing random 

noises into initial conditions, the mean value of results 

becomes nonzero, however this mean value (-0.0166) is 

very small compared to the mean value of noises (0.2) 

(Fig. 18). 

To show the effect of reconciliation of unbiased 

measurements when biases in some other measurements 

exist, the results for temperature measurements 

reconciliation for the last case are also shown in Fig. 19. 

As it is evident, reconciled values have a bias with mean 

value of 0.037 while noisy temperature measurements do 

not contain any biases. Computation time for all reactor 

tests was about 50 ms in each single step of NDDR  

using EKF. 

CONCLUSIONS 

The advantages of EKF algorithm for on-line 

nonlinear dynamic data reconciliation are presented. It is 

used for NDDR of a two-component distillation column 

and a CSTR. Different tests are performed for two cases 

to show the performance of EKF method for on-line 

NDDR. Results show considerable decrease in 

measurement errors. Results of the application of EKF 

show a high performance even for highly nonlinear 

systems. Also in the case of existence of noises in initial 

conditions, the reconciled values based on the application 

of EKF are converged to the true values after a short time 

since the start of the run by removing noises.  

When measurements contain constant biases, the filter 

successfully removes noises from measurements, but it 

introduces a very small bias to reconciled values compared 

to the original bias. This is due to the formulation of EKF 

that no penalties have been considered for biases. Thus, it 

will be more convenient to apply a gross error detection 

algorithm before applying EKF. 

The other main advantage of this algorithm is that it is 

very fast for performing a single step of NDDR. This 

method can reconciliate measurements very  quickly. 
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Table 3: Characteristics of the selected system. 

Parameter Value Units 

q 10-5 m3/s 

V 0.001 m3

-ΔHr -1.130×108 J/kgmol 

ρ 1.0 Kg/m3

cp 4184 J/kg.K 

U 20.92 J/m2.s.K 

AR 0.001 M2

Tc 340.0 K 

K0 7.86×1012 s-1

EA 14090.0 K 

αd 1.0 ⎯

Fig. 13: Comparison of reconciled reactor output concentration 

with true and measured values for the response to a step 

change in feed concentration. 

Fig. 14: Comparison of reconciled reactor output concentration 

with true and measured values for the response to a step 

change in feed concentration with noisy initial conditions. 

Fig. 15: Comparison of reconciled reactor output concentration 

with true and measured values for high transient conditions. 

Fig. 16: Comparison of reconciled reactor output concentration 

with true and measured values for high transient conditions 

whit noisy initial conditions.
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Fig. 17: Comparison of reconciled reactor output concentration 

with true and measured values for constant biases in 

concentration measurements.

Fig. 18: Comparisonof reconciled reactor output concentration 

with true and measured values for constant biases in 

concentration measurements and noisy initial conditions. 

Fig. 19: Comparison of reconciled reactor output temperature 

with true and measured values for constant biases in 

concentration measurements and noisy initial conditions.

For a single step of NDDR for distillation column 

tests it takes 0.25 seconds while for CSTR tests it is only 

50 ms, which are very small compared to sampling times 

for obtaining measurements. 

Appendix A: Dicretization of linearized state equation 

Due to the application of EKF method in discrete 

form, Eq. (3) must be discretized. For this purpose Eq. (3) 

must be integrated with respect to time. Integrating with 

initial condition of x(t0)=x0 and defining h 1 1z y J x y+ −
�� , 

results in: 
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By using the above corollary, Eq. (31) can be written 

as: 
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For  dicretization,  x  must  be  obtained at t-t0=(k-1)T   
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and t-t0=kT. Assuming that 
1f

J , x1, 2fJ , u and f(x1,u1) are 

constant within this time domain, it can be shown that: 
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Where in discrete form it can be written as: 
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APPENDIX B: LIST OF SYMBOLS 

1- List of used symbols in mathematical model of 

distillation column 

Symbols 

Dn                   Product flow rate from stage n (g mol/min) 

En                                      Murphree efficiency for stage n 

Fn                             Feed flow rate to stage n (g mol/min) 

Gk,I                  Interaction parameter between components  

                                                                  k and i, Eq. (16) 

hf,n       Enthalpy of feed stream entering stage n (J/g mol) 

Ki                                 K-value of component i at system  

                                                    temperature and pressure 

Ki,n                                K-value of component i on stage n 

Ln                       Liquid a flow rate on stage n (g mol/min) 

Mc,n                                      Heat capacity of stage n (J/K) 

m                                     Total number of components = 2 

P                                                            Total pressure (Pa) 

Pi
*
                       Vapor pressure of component i at system  

                                                                  temperature (Pa) 

Qc,n                                     Heat entered to stage n (J/min) 

qc,n                                       Heat loss from stage n (J/min) 

SL,I          Liquid heat capacity of component i (J/g mol.K) 

SV,I          Vapor heat capacity of component i (J/g mol.K) 

T                                                    System temperature (K) 

Tn                                             Temperature on stage n (K) 

t                                                                         Time (min) 

Vn                             Gas flow rate on stage n (g mol/min) 

νLn                                      Liquid hold-up on stage n (m
3
) 

νVn                                          Gas hold-up on stage n (m
3
) 

xi         Molar composition of component i in liquid phase 

xi,n                         Molar composition of component i in  

                                                      liquid stream on stage n 

xi,n (e)                                Molar composition of 

                component i in liquid phase in equilibrium with  

             yi,n at system temperature and pressure on stage n 

xf,n                       Molar composition of methanol in feed  

                                                   stream entering to stage n 

yi          Molar composition of component i in vapor phase 

yi,n                              Molar composition of component i  

                                                  in vapor stream on stage n 

Greek Symbol

γi                              Activity coefficient of component i at  

                                                             system temperature 

λI               Heat of vaporization of component i (J/ g mol) 

ρLn, ρVn           Liquid and vapor molar density on stage n,  

                                                      respectively (g mol /m
3
) 
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Subscripts 

i, j, k                                                     Component indices 

n                                                                        Stage index 

2- List of used symbols in mathematical model of CSTR 

Symbols 

AR                                  Cross section of reactor tank (m
2
) 

CA                Concentration of reactor content (kg mol/m
3
) 

0AC   Concentration of component A in feed (kg mol/m
3
) 

rAC                Reference value of reactant concentration = 

                                                             1.0×10
-3

 kg mol/m
3

AC                          Normalized concentration )C/C(
rAA

cp                        Heat capacity of reactor content (J/kg.K) 

EA                             Activation energy of the reaction (K) 

ΔHR                                                            Heat of reaction

k                                                Reaction rate constant (s
-1

) 

k0                      Constant coefficient in Arhenius equation 

q                                                         Feed flow rate (m
3
/s) 

T                                  Temperature of reactor content (K) 

T0                                                      Feed temperature (K) 

Tc                                   Temperature of cooling water (K) 

Tr                         Reference value of temperature = 100 K 

T                                        Normalized temperature (T/Tr) 

U                                  Overall heat transfer coefficient  

                    between reactor content and jacket (W/m
2
.K) 

V                                       Volume of reactor content (m
3
) 

Greek Symbols 

αd              Catalyst deactivation constant (dimensionless) 

ρ                                   Density of reactor content (kg/m
3
) 
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