A DFT Request for the Band Gap, NBO Analysis, and Global Reactivity of the Doped Metallofullerenes and their Complexes with H2 Molecules

Document Type : Research Article

Authors

1 Research Center, Kut University College, Kut, Wasit, IRAQ

2 Department of Chemistry, Payame Noor University,Tehran, I.R. IRAN

3 Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, IRAQ

4 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

5 Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, I.R. IRAN

6 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

Abstract

In this theoretical report, we are focused on the substituent effects of titanium dopants on the band gap, NBO, and global reactivity of C20-nTin metallofullerenes (n = 1 - 5), at DFT. The C18Ti2-2 metallofullerene is found as the most stable analog with the highest band gap, in which carbon atoms are replaced by Ti dopants in the equatorial location, separately. The charge on carbon atoms of C20 is estimated roughly zero, while the high positive charge on the C16Ti4-2 surface prompts this metallofullerene for hydrogen storage. The positive charge on Ti heteroatoms and the negative charge on their adjacent C atoms implies that these sites can be able to be influenced more readily by nucleophilic and electrophilic reagents, correspondingly. The electronic transitions are usually classified according to the orbitals engaged or the involved specific parts of the metallofullerene. Common types of electronic transitions in organic compounds are “π–π*”, “n–π*” and “π* (acceptor) – π (donor)”. Fascinatingly, the charge transfer (CT) tack places via the suitable overlapping among σCTi bondingʼs orbital along with σ*CTi anti-bondingʼs orbital of C20-nTin metallofullerenes. For example, the NBO analysis of C19Ti1 metallofullerene points out higher CT energy of σCTiσ*CTi (16.31 kcal/mol) with respect to σCTiσ*C―C (0.63 kcal/mol). The reactivity of metallofullerenes can be affected by the number and topology of the substituted dopants. Based on these results we infer that metallofullerenes are a potential material for hydrogen storage with high capacity and the driving force for reactivity of them is the relief of π-curvature strain and leads sp2→sp3 hybridized atoms.

Keywords

Main Subjects


[1] (a) Nazar Ali Z, Ahmadi S A, Ghazanfari D, Sheikhhosseini E, Razavi R., Investigation of Flutamide@ethyleneimine as Drug Carrier by Nanocone and Nanotube Theoretically, Iran. J. Chem. Chem. Eng. (IJCCE), 41(10): 3275–3286 (2022).
        Doi: 10.30492/ijcce.2021.542408.5014.
       (b) Tavakoli S, Ahmadi S A, Ghazanfari D, Sheikhhosseini E., Theoretical Investigation of Functionalized Fullerene Nano Carrier Drug Delivery of Fluoxetine, J. Indian Chem. Soc., 99: 100561 (2022).
       (c) Najibzade Y., Sheikhhosseini E., Akhgar M.R., Ahmadi S.A., Absorption of Tranylcypramine on C60 Nanocage: Thermodynamic and Electronic Properties, Pakistan J. Pharma. Sci., 35: 815(2022).  
        (d) Razavi R., Kaya S., Zahedifar M., Ahmadi S.A., Simulation and Surface Topology of Activity of Pyrazoloquinoline Derivatives as Corrosion Inhibitor on the Copper Surfaces, Sci. Repor. (2021).
[2] (a) Koohi M., Bastami H., Structure, Stability, MEP, NICS, Reactivity, and NBO of Si—Ge Nanocages Evolved from C20 Fullerene at DFT, Monatsh. Chem. – Chem. Month. 151:693–710 (2020).
       (b) Koohi M., Ghavami M., Haerizade B.N., Zandi H., Kassaee M.Z., Cyclacenes and Short Zigzag Nanotubes with Alternating Ge―C Bonds: Theoretical Impacts of Ge on the Ground State, Strain, and Band Gap, J. Phys. Org. Chem. 27:735–746 (2014).
       (e) Koohi M., Soleimani Amiri S., Haerizade B.N., Substituent Effect on Structure, Stability and Aromaticity of Novel BnNmC20-(n+m) Heterofullerenes, J. Phys. Org. Chem. 30: e3682–3692 (2017).
[3] (a) Soleimani-Amiri S., Koohi M., Azizi Z., Characterization of Nonsegregated C17Si3 Heterofullerenic Isomers Using Density Functional Theory Method, J. Chin. Chem. Soc., 65:1453–1464 (2018).
      (b) Haerizade B.N., Ghavami M., Koohi M., Janitabar Darzi S., Rezaee N., Kasaei M.Z., Green Removal of Toxic Pb(II) from Water by a Novel and Recyclable Ag/γ-Fe2O3@r-GO Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE) 37(2):29–37 (2018).
       (c) Kassaee M.Z., Buazar F., Koohi M., Heteroatom Impacts on Structure, Stability and Aromaticity of XnC20-n Fullerenes: A Theoretical Prediction, J. Mol. Struct. (THEOCHEM) 940:19–28 (2010).
       (d) Ghavami M., Kassaee M.Z., Mohammadi R., Koohi M., Haerizadeh B.N., Fe2O3@Graphene Oxide as a Novel and Effective Visible Light Photocatalyst for Removal of Rhodamine B from Water, Solid State Sci. 38:143–149 (2014).
       (e) Koohi M., Shariati M., Soleimani Amiri S., A Comparative Study on the Ge6C14 Heterofullerene Nanocages: A Density Functional Survey, J. Phys. Org. Chem., 30:e3678–3687 (2017).
[4] (a) Ghavami M., Mohammadi R., Koohi M., Kassaee M.Z., Visible Light Photocatalytic Activity of Reduced Graphene Oxidesynergistically Enhanced By Successive Inclusion of γ-Fe2O3, TiO2, and Ag Nanoparticles, Mater. Sci. Semicond. Process. 26: 69–78 (2014).
        (b) Ghavami M., Koohi M., Kassaee M.Z., A Selective Nanocatalyst for an Efficient Ugi Reaction: Magnetically Recoverable Cu(acac)2/NH2-T/SiO2@Fe3O4 NPs, J. Chem. Sci., 125: 1347–1357 (2013).
        (c) Ghavami M., Koohi M., Ahmadi A., Zandi H., Kassaee M.Z., Diastereoselective Synthesis of N-(p-Tosylsulfonyl)-2-Phenylaziridine Over a Novel Magnetically Recyclable Cu(II) Catalyst Accompanied with the N-Inversion Assessment at DFT, Comb. Chem. High. T. Scr. 17:756–762 (2014).
[5] (a) Koohi M., Kassaee M.Z., Ghavami M., Haerizade B.N., Ahmadi A.A., C20-nGen Heterofullerenes
(n = 5 - 10) on Focus: A Density Functional Perspective
, Monatsh. Chem., 146:1409–1417 (2015).
       (b) Koohi M., Soleimani Amiri S., Shariati M., Silicon Impacts on Structure, Stability and Aromaticity of
C20-nSin Heterofullerenes (n = 1 - 10): A Density Functional Perspective
, J. Mol. Struct. 1127:522–531 (2017).
[6] (a) Hassanpour A., Youseftabar-Miri L., Delir Kheirollahi Nezhad P., Ahmadi S., Ebrahimiasl S., Kinetic Stability, and NBO Analysis of the C20-nAln Nanocages (n = 1 - 5) Using DFT Investigation,
J. Mol. Struct., 1233:130079–130095 (2021).
       (b) Hassanpour A., Yasar S., Ebadi A.G., Ebrahimiasl S., Ahmadi S., Thermodynamic Stability, Structural and Electronic Properties for the C20-nAln Heterofullerenes (n = 1 - 5): A DFT Study, J. Mol. Model., 27(5): 124–135 (2021).
       (c) Hassanpour A., Delir Kheirollahi Nezhad P., Hosseinian A., Ebadi A.G., Ahmadi S., Ebrahimiasl S., Characterization of IR Spectroscopy, APT Charge, ESP Maps and AIM Analysis of C20 and its C20-nAln Heterofullerene Analogous (n = 1 - 5) Using DFT,
J. Phys. Org. Chem., 34(7):e4198–4212 (2021).
       (d) Vessally E., Soleimani–Amiri S., Hosseinian A., Edjlali L., Bekhradnia A., A Comparative Computational Study on the BN Ring
Doped Nanographenes
, Appl. Surf. Sci. 396:740–745 (2017).
[7] (a) Bertau M., Wahl F., Weiler A., Scheumann K., Worth J., Keller M., Prinzbach H., From Pagodanes to Dodecahedranes - Search for a Serviceable Access to the Parent (C20H20) Hydrocarbon, Tetrahedron, 53: 10029 (1997).
      (b) Prinzbach H., Weller A., Landenberger P., Wahl F., Worth J., Scott L.T., Gelmont M., Olevano D., Issendorff B., Gas-Phase Production and Photoelectron Spectroscopy of the Smallest Fullerene, C20. Nature 407:60 (2000).
[8] (a) Liu P., Zhang H., Cheng X., Tang Y., Ti-Decorated B38 fullerene: A High Capacity Hydrogen Storage Material, Int. J. Hydrogen Energy, 41: 19123 (2016).
      (b) Dong H., Hou T., Lee S-T., Li Y., New Ti-Decorated B40 Fullerene as a Promising Hydrogen Storage Material, Scientific Reports, 5: 9952 (2015).
      (c) Dunk P.W., Kaiser N.K., Mulet-Gas M., Rodríguez-Fortea A., Poblet J.M., Shinohara H., Hendrickson C.L., Marshall A.G., Kroto H.W., The Smallest Stable Fullerene, M@C28 (M = Ti, Zr, U): Stabilization and Growth from Carbon Vapor,
J. Am. Chem. Soc., 134: 9380 (2012).
[9] (a) Boruah B., Kalita B., Exploring Enhanced Hydrogen Adsorption on Ti Doped Al Nanoclusters: A DFT Study, Chem. Phys., 518: 123 (2019).
        (b) Yildirim T., Ciraci S., Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium, Phys. Rev. Lett., 94: 175501-1 (2005).
        (c) Sun Q., Wang Q., Jena P., Kawazoe Y., Clustering of Ti on a C60 Surface and Its Effect on Hydrogen Storage, J. Am. Chem. Soc. 127:14582 (2005).
[10] (a) Vessally E., Behmagham F., Massoumi B., Hosseinian A., Edjlali L., Carbon Nanocone as an Electronic Sensor for HCl Gas: Quantum Chemical Analysis, Vacuum, 134: 40 (2016).
         (b) Bashiri S., Vessally E., Bekhradnia A., Hosseinian A., Edjlali L., Utility of Extrinsic [60] Fullerenes as Work Function Type Sensors for Amphetamine Drug Detection: DFT Studies, Vacuum, 136:156 (2017).
        (c) Behmagham F., Vessally E., Massoumi B., Hosseinian A., Edjlali L., A Computational Study on the SO2 Adsorption by the Pristine, Al, and Si Doped BN Nanosheets, Superlattices Microstruct, 100: 350 (2016).
[11] (a) Cao Y., Ebadi A.G., Rahmani Z., Poor Heravi M.R., Vessally E., Substitution Effects via Aromaticity, Polarizability, APT, AIM, IR Analysis and Hydrogen Adsorption in C20-nTin Nanostructures: A DFT Survey, J. Mol. Model., 27: 348–358 (2021).
        (b) Kareem R.T., Ahmadi S., Rahmani Z., Ebadi A.G., Ebrahimiasl S., Characterization of titanium Influences on Structure and Thermodynamic Stability of Novel C20-nTin Nanofullerenes (n = 1 - 5): A Density Functional Perspective, J. Mol. Model. 27(6):176–187 (2021).
[12] (a) Becke A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A 38:3098–3100 (1988).
        (b) Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys. 98:5648–5652 (1993).
        (d) Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B 37: 785–789 (1988).
        (e) Zhao Y., Truhlar D.G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals, Theor. Chem. Account., 120: 215 (2008).
[13] (a) Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A., General Atomic and Molecular Electronic Structure System, J. Comput. Chem., 14(11):1347–1363 (1993).
        (b) Sobolewski A.L., Domcke W., Ab Initio Investigation of the Structure and Spectroscopy of Hydronium−Water Clusters, J. Phys. Chem. A 106: 4158–4167 (2002).
[14] (a) Hariharan P.C., Pople J.A., Accuracy of AHn equilibrium Geometries by Single Determinant Molecular Orbital Theory, J. Mod. Phys., 27: 209–214 (1974).
        (b) Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A., Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second Row Elements, J. Chem. Phys., 77: 3654-3665 (1982).
        (c) Frisch M.J., Pople J.A., Binkley J.S., Self-Consistent Molecular Orbital Methods 25: Supplementary Functions for Gaussian Basis Sets,
J. Chem. Phys., 80: 3265–3269 (1984).
        (d) Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.v.R., Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G set for First-Row Elements, Li-F,
J. Comput. Chem., 4: 294–301 (1983).
[15] (a) Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F., “NBO Version 3.1” Gaussian Inc., Pittsburgh. (2003).
        (b) Weinhold F., Natural Bond Orbital Analysis:
A Critical Overview of Relationships to Alternative Bonding Perspectives, J. Comput. Chem. 33: 2363 (2012).
        (c) Glendening ED, Landis CR, Weinhold F., Natural Bond Orbital Methods, Wiley Interdiscip Rev. Comput. Mol. Sci., 2: 1 (2012).
        (d) Zhang G., Musgrave C.B. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations, J. Phys. Chem. A, 111: 1554 (2007).
[16] Predew J.P., Wang Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 45: 13244(1992).
[17] (a) Domingo L.R., Chamorro E., Pérez P., Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study, J. Org. Chem., 73: 4615 (2008).
        (b) Parr R.G., Szentpaly L., Liu S., Electrophilicity Index, J. Am. Chem. Soc., 121:1922 (1999).
        (c) Parr R.G., Pearson R.G., Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc., 105:7512(1983).
        (d) Parr R.G., Yang W., “Density Functional Theory of Atoms and Molecules”, Oxford University Press, New York (1989).
[18] Zhang G., Musgrave C.B., Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations, J Phys Chem A, 111: 1554 (2007).
[19] (a) Gharibzadeh F., Vessally E., Edjlali L., Es'haghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 51-62 (2020).
        (b) Afshar M., Khojasteh R.R., Ahmadi R., Nakhaei Moghaddam M., In Silico Adsorption of Lomustin Anticancer Drug on the Surface of Boron Nitride Nanotube, Chem. Rev. Lett., 4:178−184 (2021).
        (c) Vessally E., Hosseinian A., A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3):691-703 (2021).
        (d) Hashemzadeh B., Edjlali L., Delir Kheirollahi Nezhad P., Vessally E., A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-Cata-Hexabenzocoronene Nanographen, Chem. Rev. Lett., 4:232-238 (2021).
        (e) Mohammadi M., Siadati S. A., Ahmadi S., Habibzadeh S., Poor Heravi M.R., Hossaini Z., Vessally E., Carbon Fixation of CO2 Via Cyclic Reactions with Borane in Gaseous Atmosphere Leading to Formic Acid (And Metaboric Acid); a Potential Energy Surface (PES) Study, Front. Chem., 10 (2022).
[20] (a) Vessally E., Farajzadeh P., Najaf, E., Possible Sensing Ability of Boron Nitride Nanosheet and Its Al– and Si–Doped Derivatives for Methimazole drug by Computational Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1001-1011 (2021).
        (b) Majedi S., Sreerama L., Vessally E., Behmagham F., Metal-Free Regioselective Thiocyanation of (Hetero) Aromatic C-H Bonds Using Ammonium Thiocyanate: An Overview, J. Chem. Lett., 1: 25-31 (2020).
        (c) Salehi N., Vessally E., Edjlali L., Alkorta I., Eshaghi M., Nan@Tetracyanoethylene (n=1-4) Systems: Sodium Salt Vs Sodium Electride, Chem. Rev. Lett., 3: 207-217 (2020).
        (d) Soleimani-Amiri S., Asadbeigi N., Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl) alkylgermylenes, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 39-52 (2020).
[21] (a) Sreerama L., Vessally E., Behmagham F., Oxidative Lactamization of Amino Alcohols: An Overview, J. Chem. Lett., 1: 9-18 (2020).
        (b) Norouzi N., Ebadi A. G., Bozorgian A., Vessally E., Hoseyni S. J., Energy and Exergy Analysis of Internal Combustion Engine Performance of Spark Ignition for Gasoline, Methane, and Hydrogen Fuels, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1909-1930 (2021).
        (d) Vessally E., Musavi M., Poor Heravi M.R., A Density Functional Theory Study of Adsorption Ethionamide on The Surface of the Pristine, Si and Ga and Al-Doped Graphene, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1720-1736 (2021).
        (b) Norouzi N., Ebadi A. G., Bozorgian A., Hoseyni S.J., Vessally E., Cogeneration System of Power, Cooling, and Hydrogen from Geothermal Energy: An Exergy Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 706-721 (2022).
        (d) Vessally E., Siadati S.A., Hosseinian A., Edjlali L., Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment, Talanta, 162: 505-510 (2017).
[23] (a) Norouzi N., Ebadi A. G., Bozorgian A., Hoseyni S.J., Vessally E., Cogeneration System of Power, Cooling, and Hydrogen from Geothermal Energy: An Exergy Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 706-721 (2022).
        (b) Rabipour S., Mahmood E.A., Afsharkhas M., A Review on the Cannabinoids Impacts on Psychiatric Disorders, Chem. Rev. Lett., 5: (2022).
        (c) Siadati S.A., Vessally E., Hosseinian A., Edjlali L., Possibility of Sensing, Adsorbing, and Destructing the Tabun-2D-Skeletal (Tabun Nerve Agent) by C20 Fullerene and its Boron and Nitrogen Doped Derivatives, Synthetic Metals, 220: 606-611 (2016).
        (d) Rabipour S., Mahmood E.A., Afsharkhas M., Medicinal Use of Marijuana and its Impacts on Respiratory System, J. Chem. Lett., 3: 86-94 (2022).
[14] (a) Bader R.F.W., The Quantum Mechanical Basis of Conceptual Chemistry, Monatsh. Chem., 136: 819 (2005).
        (b) Biegler–Kӧnig F., Schönbohm J., Update of the AIM2000-Program for Atoms in Molecules, J. Comp. Chem., 23:1489 (2002).
[25] (a) Froudakis G.E., “Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake”, Nano. Lett., 1: 531 (2001).
        (b) Mavrandonakis A., Froudakis G.E., Schnell M., Muhlhauser M., from Pure Carbon to Silicon Carbon Nanotubes: an ab initio Study, Nano. Lett., 3: 1481 (2003).
        (c) Mpourmpakis G., Froudakis G.E., Lithoxoos G.P., Samios J., SiC Nanotubes: A Novel Material for Hydrogen Storage, Nano. Lett., 6: 1581 (2006).